首页> 外文学位 >Design of a novel conduction heating based stress -thermal cycling apparatus for composite materials and its utilization to characterize composite microcrack damage thresholds.
【24h】

Design of a novel conduction heating based stress -thermal cycling apparatus for composite materials and its utilization to characterize composite microcrack damage thresholds.

机译:一种新型的基于传导加热的复合材料应力热循环装置的设计及其在表征复合材料微裂纹损伤阈值中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this research was to determine the effect of thermal cycling combined with mechanical loading on the development of microcracks in M40J/PMR-II-50, the second generation aerospace application material. The objective was pursued by finding the critical controlling parameters for microcrack formation from mechanical stress-thermal cycling test.;Three different in-plane strains (0%, 0.175∼0.350%, and 0.325∼0.650%) were applied to the composites by clamping composite specimens (M40J/PMR-II-50, [0,90]s, a unitape cross-ply) on the radial sides of half cylinders having two different radii (78.74mm and 37.96mm). Three different thermal loading experiments, (1) 23°C to -196°C to 250°C, (2) 23°C to 250°C, and (3) 23°C to -196°C, were performed as a function of mechanical in-plane strain levels, heating rates, and number of thermal cycles. The apparatus generated cracks related to the in-plane stresses (or strains) on plies. The design and analysis concept of the synergistic stress-thermal cycling experiment was simplified to obtain main and interaction factors by applying 2k factorial design from the various factors affecting microcrack density of M40J/PMR-II-50.;Observations indicate that the higher temperature portion of the cycle under load causes fiber/matrix interface failure. Subsequent exposure to higher stresses in the cryogenic temperature region results in composite matrix microcracking due to the additional stresses associated with the fiber-matrix thermal expansion mismatch.
机译:这项研究的目的是确定热循环与机械载荷相结合对第二代航空航天应用材料M40J / PMR-II-50中微裂纹发展的影响。通过从机械应力-热循环试验中找到微裂纹形成的关键控制参数来实现该目标。通过夹紧将三种不同的面内应变(0%,0.175〜0.350%和0.325〜0.650%)施加到复合材料上在具有两个不同半径(78.74mm和37.96mm)的半圆柱体的径向侧面上的复合材料样本(M40J / PMR-II-50,[0,90] s,单带交叉层)。进行了三个不同的热负荷实验,分别是(1)23°C至-196°C至250°C,(2)23°C至250°C和(3)23°C至-196°C。机械平面应变水平,加热速率和热循环次数的函数。该设备在板层上产生了与面内应力(或应变)有关的裂纹。通过对影响M40J / PMR-II-50微裂纹密度的各种因素进行2k因子设计,简化了协同应力-热循环实验的设计和分析概念,从而获得了主要因素和相互作用因素。负载下的循环次数导致光纤/矩阵接口故障。由于与纤维基质热膨胀失配相关的附加应力,随后在低温区域承受较高的应力会导致复合材料基体微裂纹。

著录项

  • 作者

    Ju, Jaehyung.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号