首页> 外文学位 >Metamaterial microstrip transmission line based microwave circuits and sensors.
【24h】

Metamaterial microstrip transmission line based microwave circuits and sensors.

机译:基于超材料微带传输线的微波电路和传感器。

获取原文
获取原文并翻译 | 示例

摘要

There is significant interest in metamaterials (MTMs) for the design of novel microwave circuits and sensors. Metamaterials with their unique properties allow for the design of circuits and sensors that are compact and provide new functionalities that are difficult to achieve using conventional design approaches. Split ring resonators (SRRs) and complimentary split ring resonators (CSRRs) have been studied in great detail over the last decade as metamaterial structures. However, so far these designs have largely been implemented at low-frequencies (1-3 GHz) and require complex fabrication. To design active microwave circuits, planar metamaterial unit cell structures that readily allow the integration of active devices as an integral part of the structure are necessary.;This thesis investigates the use of composite right/left handed microstrip metamaterial transmission lines in the design of microwave planar circuits and sensors. Microstrip based designs are compatible with wafer-level integration and lead to the integration of active device elements as an integral part of the metamaterial unit cell. Microfluidic channels can also be integrated with these planar structures to form sensors. Here, high frequency metamaterial transmission lines integrated with active devices to design microwave circuits are studied. Such metamaterial structures that are sensitive to their environments in the near-field are also investigated for sensor design applications.;Metamaterial structures can be designed to achieve high field strengths at local spots within the unit cell structure. Dielectric (or capacitive) loading at these local spots is investigated in detail. Actively changing the capacitance at these spots using varactor diodes leads to reconfigurable circuits and allows for the design of new functions that are difficult to achieve using conventional circuit designs. In contrast, observing a change in the performance of microwave circuits by loading with biological or chemical samples allows for the design of novel microwave sensors. The dispersion diagram of these structures shows composite right/left handed properties. These properties change upon loading with capacitive elements and are analyzed to demonstrate the working principle of the sensor circuits.;In order to accommodate active device elements as an integral part of the MTM structure, a new metamaterial unit cell is proposed in the X-band (7.5-12 GHz) frequency range that utilizes single-side metallization. Detailed analysis of the unit cell is carried out to incorporate varactor diodes at optimum locations for the design of reconfigurable or tunable microwave circuits. A novel reconfigurable power splitter with unequal power function, a wide-band reconfigurable X-band phase shifter with high linearity of phase shift, and a miniaturized reconfigurable antenna are designed and demonstrated.;Apart from the design of high frequency microwave circuits, metamaterial structures have been exploited in the designs of novel microwave sensors. A metamaterial-inspired microfluidic sensor and a novel high-Q compact volatile molecular sensor are designed and demonstrated. Furthermore, a near-field RF probe array for material characterization and simultaneous sub-wavelength imaging of structures is demonstrated. Sensors built using metamaterials-based microstrip transmission show high sensitivity compared to conventional designs.
机译:对于用于新型微波电路和传感器设计的超材料(MTM)引起了极大的兴趣。具有其独特性能的超材料允许设计紧凑的电路和传感器,并提供使用传统设计方法难以实现的新功能。在过去的十年中,作为超材料结构,对开环谐振器(SRR)和互补开环谐振器(CSRR)进行了详细的研究。但是,到目前为止,这些设计很大程度上是在低频(1-3 GHz)上实现的,并且需要复杂的制造工艺。为了设计有源微波电路,必须要有平面超材料单晶胞结构,该结构易于将有源器件集成为该结构的组成部分。本论文研究了复合的右/左手微带超材料超导体传输线在微波设计中的用途。平面电路和传感器。基于微带的设计与晶圆级集成兼容,并导致有源器件元件的集成成为超材料单元的不可或缺的一部分。微流体通道也可以与这些平面结构集成在一起以形成传感器。在这里,研究了与有源器件集成以设计微波电路的高频超材料传输线。还研究了这种对近场环境敏感的超材料结构,以用于传感器设计应用。超材料结构可设计成在晶胞结构内的局部位置获得高场强。详细研究了这些局部点的介电(或电容)负载。使用变容二极管主动改变这些点的电容会导致电路可重构,并允许设计新功能,而这些功能是使用常规电路设计难以实现的。相反,通过加载生物或化学样品观察微波电路性能的变化,可以设计出新颖的微波传感器。这些结构的分散图显示了右/左手的复合特性。这些特性随电容元件的加载而变化,并进行分析以证明传感器电路的工作原理。;为了将有源器件元件作为MTM结构的组成部分,在X波段中提出了一种新的超材料单元利用单面金属化的(7.5-12 GHz)频率范围。为了对可重构或可调谐微波电路进行设计,对单元电池进行了详细分析,以在最佳位置结合变容二极管。设计并演示了一种新型的具有不等功率功能的可重构功率分配器,具有高相移线性度的宽带可重构X波段移相器以及小型化的可重构天线。除高频微波电路设计之外,超材料结构在新颖的微波传感器的设计中已被利用。设计并演示了以超材料为灵感的微流体传感器和新型高Q紧凑型挥发性分子传感器。此外,展示了用于材料表征和结构的同时亚波长成像的近场RF探针阵列。与传统设计相比,使用基于超材料的微带传输构建的传感器显示出高灵敏度。

著录项

  • 作者

    Wiwatcharagoses, Nophadon.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号