首页> 外文学位 >Flow regulation in microchannels via electrical alteration of surface properties.
【24h】

Flow regulation in microchannels via electrical alteration of surface properties.

机译:通过表面特性的电气改变在微通道中进行流量调节。

获取原文
获取原文并翻译 | 示例

摘要

Miniaturization of (bio)analytical processes has become a significant research area in the past decade. Factors driving the development of microanalytical devices include the need for a reduction in samples and reagents consumption, cost and waste production, and analysis time. The development of integrated microfluidic technology (lab-on-a-chip) requires local control of fluid flow. Conventional approaches involve moving parts and complex fabrication techniques, which makes them unreliable and prevents their integration in large microanalytical systems.; This research presents a reliable and inexpensive way to electrically regulate the fluid flow through the microchannels via a structure that is simple to fabricate and eliminates the need for moving parts. An electrical signal is used to deposit silver on a thin solid electrolyte layer in a small region of a microchannel (valve area). By reversing the polarity of the voltage applied, the electrodeposits dissolve returning the valve area to its original condition.; The electrodeposited silver, which has a high fractal dimension and can have features as high as 0.6 mum, changes the fluid-surface interaction. It is shown that the electrodeposition increases the contact angle of water, methanol, and 40 weight% methanol in water, by 20°, 27°, and 19°, respectively. The increase in contact angle is representative of a decrease in surface energy or an increase in surface hydrophobicity. Since fluid flow in a microchannel is dominated by the nature of the channel surface, this increase in effective hydrophobicity can be used to control the movement of the fluid.; The electrodeposited silver can act as a control element by adding roughness and heterogeneity to the surface. The surface roughness and heterogeneity are able to control the fluid flow through the microchannels by pinning the liquid at the surface defects and by trapping air under the liquid at the surface roughness.; The characteristics of the fluid control system are shown by comparing the flow rate of water through a channel with an open valve versus a channel with an inhibited valve, where a micropump is used for fluid actuation.{09}It is shown that it takes the water only 6 seconds to pass through an open valve area versus 1 minute and 4 seconds to pass through an inhibited valve area. Moreover, the flow rate of 40 weight% methanol in water through a channel with an open valve is compared to the rate through a channel with a closed valve. In this case, where only capillary pressure is used for fluid propagation through the microchannels, it can be seen that the electrodeposited silver is able to completely stop the flow.
机译:在过去的十年中,(生物)分析过程的小型化已成为重要的研究领域。推动微分析设备发展的因素包括减少样品和试剂的消耗,成本和废物产生以及分析时间的需求。集成微流体技术(片上实验室)的发展需要对流体流量进行局部控制。常规方法涉及移动部件和复杂的制造技术,这使它们不可靠,并阻止了它们集成到大型微分析系统中。这项研究提出了一种可靠且廉价的方法,该方法通过一种易于制造且无需移动部件的结构来电调节通过微通道的流体流量。电信号用于将银沉积在微通道小区域(阀区域)中的薄固体电解质层上。通过反转施加电压的极性,电沉积物溶解,使阀区域恢复到原始状态。电沉积的银具有高的分形维数并可以具有高达0.6微米的特征,从而改变了流体表面的相互作用。结果表明,电沉积使水,甲醇和40%(重量)的甲醇在水中的接触角分别增加20°,27°和19°。接触角的增加代表表面能的减少或表面疏水性的增加。由于微通道中的流体流动主要由通道表面的性质决定,有效疏水性的这种增加可用于控制流体的运动。电沉积银可以通过增加表面粗糙度和异质性来充当控制元素。表面粗糙度和非均质性能够通过将液体钉扎在表面缺陷处并且通过将空气捕获在表面粗糙度下的液体下面来控制流过微通道的流体。通过比较流经带打开阀的通道与带禁止阀的通道的水的流量来显示流体控制系统的特性,在流率方面,使用微型泵进行流体驱动。{09}仅需6秒钟的水即可通过打开的阀门区域,而仅需1分4秒钟的水即可通过禁止的阀门区域。此外,将通过开口阀的通道中的水中的40重量%甲醇的流量与通过具有关闭阀的通道的流量进行比较。在这种情况下,在仅毛细管压力用于流体通过微通道的传播的情况下,可以看出电沉积的银能够完全停止流动。

著录项

  • 作者

    Maroufkhani, Pooneh.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号