首页> 外文学位 >Crop improvement through biotechnology: Targeting drought resistance and photosynthesis.
【24h】

Crop improvement through biotechnology: Targeting drought resistance and photosynthesis.

机译:通过生物技术改善作物:针对抗旱和光合作用。

获取原文
获取原文并翻译 | 示例

摘要

The world population is projected to grow from the current 7 to about 9 billion by 2050. One of the major challenges that will face agriculture in the next few decades is sustainable food production under climate uncertainties and dwindling natural resources to meet the increased global needs for food. Plant biotechnology plays a vital role in meeting this global challenge. The goal of this research was to investigate the use of biotechnology to improve plant photosynthesis, water use efficiency and drought resistance, to either increase yield and/or alleviate the impacts of water stress on biomass and yield. In the first assay, the use of two Arabidopsis thaliana promoters, RD29A and RD29B, in soybean (Glycine max (L.) Merr.) was investigated and results suggest that they may be useful in controlling transgenes targeted to enhance drought resistance in soybean as long as there are no agronomic penalties associated with low-level expression in the absence of stress. In the second assay, the expression of AQPV1, an aquaporin gene from Chlorella virus MT325, and its effect in mitigating drought stress in tobacco (Nicotiana tabacum) was investigated. Results showed that the transformed AQPV1 plants maintained higher photosynthetic rates, less negative water and osmotic potentials, and accumulated greater biomass when subjected to drought compared to control plants. In the third assay, the potential use of C4 enzymes from Cyanobacteria to improve C3 photosynthesis was investigated. The cyanobacterial ictB (inorganic carbon transporter B) and FBP/SBPase (fructose-1,6-/sedoheptulose-1,7-biphosphatase) genes were placed under control of constitutive promoters and introduced into soybean chloroplasts via Agrobacterium-mediated transformation. The former gene is involved in HCO3- accumulation and the latter catalyzes the hydrolysis of both fructose-1,6-bisphosphate and sedoheptulose-1,7-bisphosphate in the Calvin cycle. Leaf physiological data collected in both the greenhouse and the field revealed that transgenic soybeans displayed higher leaf photosynthetic rates compared to control plants. In addition, some of the tested transgenic events performed better than control plants when exposed to soil dry-down experiments. Results from these assays contribute to the ongoing research aiming at using plant genetic manipulations to increase crop productivity and alleviate environmental stresses.
机译:预计到2050年,世界人口将从目前的70亿增长到90亿。在未来几十年中,农业将面临的主要挑战之一是在气候不确定性和自然资源不断减少的情况下实现可持续粮食生产,以满足全球对粮食需求的增长餐饮。植物生物技术在应对这一全球挑战中起着至关重要的作用。这项研究的目的是研究利用生物技术改善植物的光合作用,提高水分利用效率和抗旱性,以增加产量和/或减轻水分胁迫对生物量和产量的影响。在第一个试验中,研究了两个拟南芥启动子RD29A和RD29B在大豆(Glycine max(L.)Merr。)中的使用,结果表明它们可用于控制旨在增强大豆抗旱性的转基因,例如只要在没有压力的情况下不存在与低水平表达相关的农艺处罚。在第二次试验中,研究了小球藻病毒MT325的水通道蛋白基因AQPV1的表达及其对减轻烟草(Nicotiana tabacum)干旱胁迫的作用。结果表明,与对照植物相比,在干旱条件下,转化后的AQPV1植物保持较高的光合速率,较少的负水和渗透势,并积累了更多的生物量。在第三个分析中,研究了蓝藻C4酶在改善C3光合作用方面的潜在用途。将蓝细菌的ictB(无机碳转运蛋白B)和FBP / SBPase(果糖-1,6- /七庚二糖-1,7-双磷酸酶)基因置于组成型启动子的控制下,并通过农杆菌介导的转化引入大豆叶绿体中。前一个基因参与HCO3的积累,而后者在加尔文循环中催化1,6-果糖双磷酸和1,7-二磷酸七庚酯的水解。在温室和大田中收集的叶片生理数据表明,与对照植物相比,转基因大豆显示出更高的叶片光合速率。另外,当暴露于土壤干燥实验中时,一些测试的转基因事件表现得比对照植物更好。这些测定的结果有助于正在进行的旨在利用植物基因操作来提高作物生产力和减轻环境压力的研究。

著录项

  • 作者

    Bihmidine, Saadia.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Biology Molecular.;Biology Plant Physiology.;Chemistry Biochemistry.;Agriculture Plant Culture.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号