首页> 外文学位 >Dyadic green functions and their applications in classical and quantum nanophotonics.
【24h】

Dyadic green functions and their applications in classical and quantum nanophotonics.

机译:双向绿色函数及其在经典和量子纳米光子学中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Research in solid-state nanophotonics and quantum optics has been recently pushing the limits in semiconductor microcavity design. High quality microcavities that confine light into small volumes are now able to drastically alter the local density of states (LDOS). Plasmonic systems can provide smaller effective confinements, however it is unclear if the benefits of confinement are good enough to balance material losses due to non-radiative processes. This thesis presents a compendium of techniques for calculating photonic Green functions in various lossy, inhomogeneous magneto-dielectric systems. Subsequently we derive a rigorous theory of quantum light-matter interactions, valid in both weak and strong coupling limits, and show how the classical photonic Green function is developed to calculate Purcell factors, Lamb shifts, and the near and far field spectra from a single photon emitter. Using these techniques, this work investigates the classical and quantum optical properties of a variety of inhomogeneous structures, including their coupling to single photon emitters. This includes examining Purcell factors above negative index slabs and showing the convergence of many slow-light modes leads to a drastic increase in the LDOS along with large Lamb shifts. The optical trapping of metallic nanoparticles is examined above a negative index slab and a silver half-space, showing the importance of interparticle coupling on the optical forces. Then the interaction between a quantum dot and a metallic nanoparticle is studied where far-field strong coupling effects are observed only when the metallic nanoparticle is considered beyond the dipole approximation. Finally, this work addresses the issue of the LDOS diverging in lossy materials, which necessitates a description of spontaneous emission beyond the dipole approximation; the "local field problem'' in quantum optics is revisited and generalized to include local field corrections for use in any photonic medium. The strength of finite-difference time-domain techniques is demonstrated in a number of cases for the calculation of regularized Green functions in lossy inhomogeneous media. This thesis presents a comprehensive study of Green function approaches to model classical and quantum light-matter interactions in arbitrary nanophotonic structures, including quantum dots, semiconductor microcavities, negative index waveguides, metallic half-spaces and metallic nanoparticles.
机译:固态纳米光子学和量子光学的研究最近推动了半导体微腔设计的极限。现在,将光限制在小体积内的高质量微腔能够极大地改变状态的局部密度(LDOS)。等离子系统可以提供较小的有效禁闭空间,但是尚不清楚禁闭系统的好处是否足以平衡由于非辐射过程而造成的材料损失。本文提出了一种在各种有损,非均匀磁电介质系统中计算光子格林函数的技术概要。随后,我们得出了严格的量子光-物质相互作用理论,该理论在弱耦合和强耦合极限中均有效,并展示了如何开发经典的光子格林函数来计算单个赛尔赛尔因数,兰姆位移以及近场和远场光谱光子发射器。使用这些技术,这项工作研究了各种不均匀结构的经典和量子光学性质,包括它们与单光子发射体的耦合。这包括检查负折射率板上方的赛尔因子,并显示许多慢光模式的收敛会导致LDOS急剧增加以及较大的Lamb漂移。在负折射率平板和银半空间上方检查了金属纳米粒子的光阱,显示了粒子间耦合对光学力的重要性。然后研究了量子点和金属纳米粒子之间的相互作用,其中仅当认为金属纳米粒子超出偶极近似时才观察到远场强耦合效应。最后,这项工作解决了LDOS在有损耗材料中发散的问题,这就需要描述超过偶极近似的自发发射。量子光学中的“局部场问题”被重新讨论并推广到包括在任何光子介质中使用的局部场校正,并在许多情况下证明了时域有限差分技术在计算正则格林函数方面的优势本文对格林函数方法进行了全面的研究,以格林函数方法模拟任意纳米光子结构中的经典和量子光-物质相互作用,包括量子点,半导体微腔,负折射率波导,金属半空间和金属纳米粒子。

著录项

  • 作者

    Van Vlack, Cole P.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Physics Optics.;Physics Quantum.;Physics Atomic.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 242 p.
  • 总页数 242
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号