首页> 外文学位 >Full-duplex Infrastructure Nodes: Achieving Long Range with Half-duplex Mobiles.
【24h】

Full-duplex Infrastructure Nodes: Achieving Long Range with Half-duplex Mobiles.

机译:全双工基础结构节点:使用半双工移动设备实现远距离通信。

获取原文
获取原文并翻译 | 示例

摘要

One of the primary sources of inefficiency in today's wireless networks is the half-duplex constraint -- the assumption that nodes cannot transmit and receive simultaneously in the same band. The reason for this constraint and the hurdle to full-duplex operation is self-interference: a node's transmit signal appears at its own receiver with very high power, desensitizing the receiver electronics and precluding the reception of a packet from a distant node. Recent research has demonstrated that full-duplex can indeed be feasible by employing a combination of analog and digital self-interference cancellation mechanisms. However, two glaring limitations remain. The first is that the full-duplex state-of-the-art requires at least two antennas and extra RF resources that space-constrained mobile devices may not be able to accommodate. The second limitation is range: current full-duplex demonstrations have been for ranges less than 10 m. At longer distances nodes must transmit with higher power to overcome path loss, and the power differential between the self-interference and the signal-of-interest becomes more that the current cancellation mechanisms can handle. We therefore present engineering solutions for answering the following driving questions: (a) can we leverage full-duplex in a network consisting mostly of half-duplex mobiles? and (b) can we extend the range of full-duplex by achieving self-interference suppression sufficient for full-duplex to outperform half-duplex at ranges exceeding 100 m? In answer to the first question, we propose moving the burden of full-duplexing solely to access points (APs), enabling the AP to boost network throughput by receiving an uplink signal from one half-duplex mobile, while simultaneously transmitting a downlink signal to another half-duplex mobile in the same band. In answer to the second question we propose an AP antenna architecture that uses a careful combination of three mechanisms for passive suppression of self-interference: directional isolation, absorptive shielding, and cross-polarization. Results from a 20 MHz OFDM prototype demonstrate that the proposed AP architecture can achieve 90+ dB total self-interference suppression, enabling > 50% uplink rate gains over half-duplex for ranges up to 150 m.
机译:当今无线网络效率低下的主要根源之一是半双工约束-假设节点无法在同一频带中同时进行发送和接收。这种限制的原因和全双工操作的障碍是自干扰:节点的发射信号以非常高的功率出现在其自己的接收器上,这使接收器电子设备不敏感,并阻止了从远距离节点接收数据包。最近的研究表明,通过组合使用模拟和数字自干扰消除机制,全双工确实可行。但是,仍然存在两个明显的局限性。首先是现有的全双工技术需要至少两个天线和空间受限的移动设备可能无法容纳的额外RF资源。第二个限制是范围:当前的全双工演示范围小于10 m。在更长的距离处,节点必须以更高的功率进行传输,以克服路径损耗,并且自干扰信号和感兴趣信号之间的功率差变得更大,电流抵消机制可以处理。因此,我们提出了工程解决方案来回答以下驱动问题:(a)我们能否在主要由半双工移动设备组成的网络中利用全双工? (b)我们能否通过实现足以使全双工在超过100 m的范围内胜过半双工的自干扰抑制来扩展全双工的范围?为了回答第一个问题,我们建议将全双工的负担完全转移到接入点(AP),通过从一个半双工移动站接收上行链路信号,同时将下行链路信号发送到接入点,使AP能够提高网络吞吐量。同一频段中的另一半双工移动设备。为了回答第二个问题,我们提出了一种AP天线架构,该架构使用三种机制的仔细组合来被动抑制自身干扰:方向隔离,吸收性屏蔽和交叉极化。 20 MHz OFDM原型的结果表明,所提出的AP架构可实现90+ dB的总自干扰抑制,从而在长达150 m的半双工模式下实现> 50%的上​​行链路速率增益。

著录项

  • 作者

    Everett, Evan.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2012
  • 页码 89 p.
  • 总页数 89
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号