首页> 外文学位 >Modelling and stress analysis of a polyurethane diaphragm for use in artificial hearts.
【24h】

Modelling and stress analysis of a polyurethane diaphragm for use in artificial hearts.

机译:用于人造心脏的聚氨酯隔膜的建模和应力分析。

获取原文
获取原文并翻译 | 示例

摘要

Artificial heart polyurethane diaphragms are subjected to cyclic loading which makes devices scheduled for long-term use prone to fatigue failure. Stress concentrations developed during the deformation of the diaphragm are the sources of microcracks that lead to the untimely fatigue failure. A solid model of a typical diaphragm shape was analyzed for stress and strain using Finite Element Analysis (FEA) software, ABAQUS/Standard. The Mooney-Rivlin, hyperelastic, strain energy model for strains 50%, is evaluated for use in the FEA analysis. The material constants for the strain energy model can be determined from standard homogenous material tests, uniaxial, biaxial and planar materials tests. For this study, the material constants were determined from uniaxial stress-strain data and biaxial stress-strain data for biomedical grade polyurethane. Uniaxial data was provided from a local manufacturer of the polyurethane material. For biaxial data, an inflation apparatus was created to determine the biaxial stress-strain curve for the same material. Planar test data was excluded from the analysis. The results from both data sets were evaluated for use with the Mooney-Rivlin curve and are compared against published data for Biomer. A step-by-step analysis of ABAQUS/Standard was undertaken to assess boundary conditions, analysis methods and element types for 3D analysis of the polyurethane diaphragm. A structured hexagonal mesh using second order, hybrid, reduced integration elements, C3D20RH and a built-in boundary condition is recommended for use in the diaphragm inversion and deformation analysis. The model is expected to form the basis of future efforts investigating more complex shapes. This study found strains over 50% and stresses over 5MPa appear near the periphery of the model when the diaphragm is inverted and pressurized to 30KPa (255 mmHg).
机译:人造心脏聚氨酯隔膜承受周期性载荷,这使得计划长期使用的设备容易出现疲劳故障。膜片变形期间产生的应力集中是导致不合时宜的疲劳破坏的微裂纹的根源。使用有限元分析(FEA)软件ABAQUS / Standard对典型隔膜形状的实体模型进行了应力和应变分析。对小于50%的应变的Mooney-Rivlin超弹性应变能模型进行了评估,以用于FEA分析。应变能模型的材料常数可以通过标准的均质材料测试,单轴,双轴和平面材料测试确定。对于本研究,材料常数是根据生物医学级聚氨酯的单轴应力-应变数据和双轴应力-应变数据确定的。单轴数据由当地的聚氨酯材料制造商提供。对于双轴数据,创建了一个充气设备来确定同一材料的双轴应力-应变曲线。平面测试数据从分析中排除。对两个数据集的结果进行了评估,以用于Mooney-Rivlin曲线,并将其与Biomer的公开数据进行比较。对ABAQUS / Standard进行了逐步分析,以评估3D分析聚氨酯膜片的边界条件,分析方法和元素类型。建议将使用二阶,混合,简化积分元素,C3D20RH和内置边界条件的结构化六边形网格用于膜片反演和变形分析。该模型有望成为研究更复杂形状的未来工作的基础。这项研究发现,当膜片倒置并加压到30KPa(255 mmHg)时,在模型的外围附近会出现50%以上的应变和5MPa以上的应力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号