首页> 外文学位 >High-order central finite-volume schemes for atmospheric modeling .
【24h】

High-order central finite-volume schemes for atmospheric modeling .

机译:大气建模的高阶中心有限体积方案。

获取原文
获取原文并翻译 | 示例

摘要

Atmospheric numerical modeling has been going through drastic changes over the past decade, mainly to utilize the massive computing capability of the petascale systems. This obliges the modelers to develop grid systems and numerical algorithms that facilitate exceptional level of scalability on these systems. The numerical algorithms that can address these challenges should have the local properties such as the high on-processor operation count and minimum parallel communication i.e., high parallel efficiency. They should also satisfy the following properties such as inherent local and global conservation, high-order accuracy, geometric flexibility, non-oscillatory advection and positivity preservation properties. The goal of this dissertation is to address these challenges using various high-order numerical methods.;As a possible solution to achieve the above mentioned desirable properties, I considered central-upwind finite-volume (C-FV) schemes, which are proven to be robust, simple and accurate in many research areas and practical applications. These numerical methods are a subset of Godunov-type methods, widely known for their simplicity and for solving hyperbolic conservation laws. But, these staggered central schemes may not provide a satisfactory resolution when small time steps are enforced by stability restrictions. To address this issue, the considered schemes have an upwind nature, in the sense that they are based on the one-sided local speeds of propagation. The central-upwind framework provides high-order accuracy by decreasing the numerical dissipation present in the staggered central schemes. This is the reason, these schemes are central-upwind schemes, but here throughout my present work, I refer them to as C-FV schemes. The construction in the proposed schemes is based on the use of the Courant-Friedrich-Levy (CFL) related local speeds of propagation and on integration over Riemann fans of variable sizes. This way, a non-staggered fully discrete central scheme is derived and is naturally reduced to a particularly simple semi-discrete form. Among the advantages of these schemes are that they do not require Riemann solvers or characteristic decomposition and grid staggering. These characteristics make them different from upwind schemes and universal methods, so they are promising candidate for providing higher-order accuracy to solutions governed by conservative systems. However, little is known for their practicality to geoscience problems that are also governed by conservative systems.;In this work, I examine the performance of these high-order schemes. Based on existing knowledge from other fields, I chose five promising schemes that are expected to possess desired properties needed in atmospheric modeling. The five schemes considered are Kurganov-Petrova (KP), a third-order compact central Weighted Essentially Non- Oscillatory (WENO-33), a fifth-order WENO (WENO-5), combination of WENO-33 and WENO-5 (WENO-35), a fourth-order Kurganov-Liu (KL), for a linear transport problem on a two-dimension (2D) Cartesian plane and on sphere. I used the shallow water model on the sphere using the C-FV schemes.;The cubed-sphere computational grid system has been chosen in this research work. This type of grid system is very well suited for FV discretization, mainly because the underlying control-volumes (grid cells) are logically rectangular, facilitating an easy implementation. Moreover, the cubed-sphere grid system is free of polar singularities, and its grid uniformity leads to excellent parallel efficiency.;For numerical modeling of the transport of trace constituents in atmospheric models, a non-oscillatory positivity preserving solution is essential. Standard WENO schemes produce spurious oscillations in the numerical solution, to address this issue, I employed a Bound-Preserving filter, which restricts the numerical solution to be inside the initial upper and lower bounds and suppresses the spurious oscillations, an additional flux correction step, to achieve strictly positive-definite solution is also employed to remove any negative values produced by the C-FV schemes, I used these filters for KL scheme as well. Both these techniques are inexpensive and effective. I use either a third-order or fourth-order Strong Stability Preserving Runge-Kutta time stepping scheme based on the order of the spatial discretization. The numerical schemes are evaluated with several benchmark tests, on a 2D Cartesian plane and cubed-sphere geometry for transport problem, that accentuate accuracy and conservation properties.;In this present work, I only extend three schemes out of five schemes considered for solving the transport equation, i.e. KL, WENO-5 and WENO-35 schemes to shallow water model, because it can be concluded from the results of transport problem on a cubed-sphere geometry that these three schemes perform better than the other schemes in terms accuracy and performance. For evaluating flux for shallow water model, I employ a different flux evaluation formula developed by Kurganov-Noelle-Petrova (KNP), since KNP flux evaluation is more accurate than the one used for transport problem. These three schemes are evaluated using the test suite that is accepted by the atmospheric sciences community.
机译:在过去的十年中,大气数值建模已经发生了翻天覆地的变化,主要是利用了千万亿次系统的巨大计算能力。这迫使建模人员必须开发网格系统和数值算法,以促进这些系统的出色可伸缩性。可以解决这些挑战的数值算法应具有局部特性,例如高的处理器上的操作数量和最少的并行通信,即高并行效率。它们还应满足以下特性,例如固有的局部和全局守恒,高阶精度,几何柔韧性,非振荡对流和正性保持特性。本文的目的是使用各种高阶数值方法来应对这些挑战。作为实现上述理想特性的一种可行解决方案,我考虑了中央迎风有限体积(C-FV)方案,该方案已被证明具有以下优点:在许多研究领域和实际应用中具有鲁棒性,简单性和准确性。这些数值方法是Godunov型方法的子集,因其简单性和求解双曲守恒定律而广为人知。但是,当稳定性限制强制执行较小的时间步长时,这些交错的中央方案可能无法提供令人满意的分辨率。为了解决这个问题,考虑到的方案基于单方面的本地传播速度,因此具有顺风性质。中央逆风框架通过减少交错中央方案中存在的数值耗散来提供高阶精度。这就是原因,这些方案是中央逆向方案,但是在我目前的整个工作中,我将它们称为C-FV方案。拟议方案中的构造基于与库仑特-弗里德里希-利维(CFL)相关的局部传播速度的使用,以及基于可变大小的黎曼风机的集成。这样,得出了非交错的完全离散的中心方案,并且自然地将其简化为特别简单的半离散形式。这些方案的优点之一是它们不需要Riemann求解器或特征分解和网格交错。这些特性使它们不同于迎风方案和通用方法,因此它们有望为保守系统控制的解决方案提供高阶精度。但是,由于它们对于同样由保守系统控制的地球科学问题的实用性知之甚少;在这项工作中,我研究了这些高阶方案的性能。根据其他领域的现有知识,我选择了五种有前途的方案,这些方案有望具有大气建模所需的理想特性。考虑的五种方案是Kurganov-Petrova(KP),三阶紧凑型中央加权基本非振荡(WENO-33),五阶WENO(WENO-5),WENO-33和WENO-5( WENO-35),四阶Kurganov-Liu(KL),用于二维(2D)笛卡尔平面和球面上的线性传输问题。我使用了C-FV方案在球体上使用浅水模型。;本研究工作选择了立方球体计算网格系统。这种类型的网格系统非常适合于FV离散化,主要是因为底层的控制量(网格单元)在逻辑上是矩形的,从而易于实现。此外,立方球面网格系统没有极性奇异点,并且其网格均匀性导致出色的并行效率。;对于大气模型中痕量成分迁移的数值模拟,非振荡性正性保存解决方案是必不可少的。标准的WENO方案会在数值解中产生杂散振荡,为解决此问题,我采用了一个Bound-Preserving滤波器,它将数值解限制在初始上限和下限之内,并抑制了杂散振荡,这是一个额外的磁通校正步骤,为了实现严格的正定解,还可以消除C-FV方案产生的任何负值,我也将这些滤波器用于KL方案。这两种技术都是廉价且有效的。我使用基于空间离散化顺序的三阶或四阶强稳定性保持Runge-Kutta时间步进方案。在二维笛卡尔平面和立方球体几何形状的运输问题上,通过几种基准测试对数值方案进行了评估,这突出了精度和守恒性质。;在本工作中,我仅将五个方案中的三个方案扩展来考虑求解浅水模型的输运方程,即KL,WENO-5和WENO-35方案,因为可以从立方球形几何体上的运输问题的结果得出结论,就准确性和性能而言,这三种方案的性能均优于其他方案。为了评估浅水模型的通量,我采用了Kurganov-Noelle-Petrova(KNP)开发的不同通量评估公式,因为KNP通量评估比用于运输问题的方法更准确。这三种方案是使用大气科学界公认的测试套件进行评估的。

著录项

  • 作者

    Katta, Kiran Kumar.;

  • 作者单位

    The University of Texas at El Paso.;

  • 授予单位 The University of Texas at El Paso.;
  • 学科 Mathematics.;Engineering Mechanical.;Atmospheric Sciences.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 语言学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号