首页> 外文学位 >Modeling and analysis of lead-acid batteries with hybrid lead and carbon negative electrodes.
【24h】

Modeling and analysis of lead-acid batteries with hybrid lead and carbon negative electrodes.

机译:具有铅和碳负极的铅酸蓄电池的建模和分析。

获取原文
获取原文并翻译 | 示例

摘要

Valve-regulated lead acid (VRLA) batteries used for hybrid electric vehicle (HEV) applications experience frequent high-rate partial state of charge (HRPSOC) cycling. The failure mode of VRLA batteries under HRPSOC cycling is accumulative sulfation in the negative electrodes. New HEV batteries, such as PbC batteries and UltraBatteries, based on the technologies combining conventional lead acid batteries and super capacitors have emerged in the last decade. PbC batteries replace the negative lead plate with an activated carbon (AC) plate, completely removing the sulfation in the negative electrode. UltraBatteries use a hybrid negative plate consisting of lead and AC materials and relieve the high-rate loads on the lead-acid cells and extend their lifetime. However, since the AC electrode material in PbC batteries and UltraBatteries lowers the battery energy density and increases gassing rate during charge, a model is useful to quickly optimize battery design and analyze gassing phenomena with different AC materials before physical prototypes. Further, the interactions between the battery and capacitor materials in an UltraBattery need in-depth understanding and the current partitioning between the two components needs to be predicted and evaluated.;To date, both lead acid battery models and electrochemical capacitor models are available, but were developed separately. No models have been developed to understand the hybrid battery with presence of both battery and capacitive electrodes. In this work, a mathematical model for PbC batteries was firstly developed to predict performance under various operating conditions. This model couples the electrochemical, mass transport and thermal processes and also accounts for the gassing behaviors at electrodes during charge. With the feature of capacity and gassing rate predictions the model can serve as a design tool to compare and select desirable carbon candidates for specified applications of PbC batteries. The PbC battery model is applied to simulate and analyze the gassing and thermal behaviors during both galvanostatic charging and cycling processes. The galvanostatic charging processes with different gassing kinetics are investigated. Hydrogen gassing rate and charge efficiencies are focused on for cycling simulation and the effect of operational factors are demonstrated. The temperature rise due to gassing processes is compared among different electrode specifications.;In addition, a fundamental model for UltraBatteries with lead-acid cells and capacitor cells was developed. Dynamic behaviors of internal parameters such as electrolyte potential and current density across the cells during cycling are revealed. One important parameter is introduced as a design ratio, namely the volume fraction of the lead electrode portion in the cell. The effect of design ratio on energy and power performance, such as capacity, current partitioning between cells and electrode utilization efficiency are studied through cycling simulations. Operational factors are evaluated as well, including the effects of duty ratio of a cycle, tloadttotal , starting SOC, cycling frequency and cycling current on current partitioning. This model unveiled the internal dynamics of current partition inside UltraBatteries through simulation results and offered guidelines for improving the design of batteries with hybrid electrodes and optimizing the operating strategies to reduce the peak discharge load on lead electrodes and thus prolong battery lifetime.
机译:用于混合动力汽车(HEV)应用的阀控式铅酸(VRLA)电池会经历频繁的高速率部分充电状态(HRPSOC)循环。 VRLA电池在HRPSOC循环下的失效模式是负极中的累积硫酸化。在过去的十年中,出现了基于传统铅酸电池和超级电容器相结合的技术的新型HEV电池,例如PbC电池和UltraBattery。 PbC电池用活性炭(AC)板代替了负极铅板,从而完全去除了负极中的硫酸盐。 UltraBatteries使用由铅和AC材料组成的混合负极板,可减轻铅酸电池上的高速率负载并延长其使用寿命。但是,由于PbC电池和UltraBatteries中的AC电极材料会降低电池能量密度并提高充电过程中的放气速率,因此在物理原型制作之前,模型可用于快速优化电池设计并分析使用不同AC材料的放气现象。此外,UltraBattery中电池和电容器材料之间的相互作用需要深入了解,并且需要预测和评估两个组件之间的电流分配。;迄今为止,铅酸电池模型和电化学电容器模型都可用,但是分别开发。尚未开发出模型来理解具有电池和电容电极的混合电池。在这项工作中,首先开发了PbC电池的数学模型来预测各种工作条件下的性能。该模型将电化学,传质和热过程耦合在一起,还考虑了充电期间电极上的放气行为。该模型具有容量和放气速率预测的功能,可以用作设计工具,以比较和选择用于PbC电池特定应用的理想碳候选物。 PbC电池模型用于模拟和分析恒电流充电和循环过程中的放气和热行为。研究了具有不同放气动力学的恒电流充电过程。氢气的放气速率和充注效率着重于循环模拟,并论证了操作因素的影响。比较了不同电极规格下由于充气过程导致的温升。;此外,开发了带有铅酸电池和电容器电池的超电池的基本模型。揭示了内部参数的动态行为,例如循环过程中电池两端的电解质电势和电流密度。作为设计比率,引入了一个重要的参数,即电池中引线电极部分的体积分数。通过循环仿真研究了设计比率对能量和功率性能的影响,例如容量,电池之间的电流分配和电极利用效率。还评估了操作因素,包括一个周期的占空比,tloadttotal,启动SOC,循环频率和循环电流对电流分配的影响。该模型通过仿真结果揭示了UltraBatteries内部电流分配的内部动态,并提供了改进带有混合电极的电池设计以及优化操作策略以减少引线电极上的峰值放电负荷从而延长电池寿命的指导原则。

著录项

  • 作者

    Gou, Jun.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Mechanical.;Engineering Chemical.;Engineering Automotive.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 223 p.
  • 总页数 223
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号