首页> 外文学位 >Modeling laser pulse evolution in ionizing gas and plasma with application to laser wakefield acceleration.
【24h】

Modeling laser pulse evolution in ionizing gas and plasma with application to laser wakefield acceleration.

机译:对电离气体和等离子体中的激光脉冲演化建模并应用于激光尾波加速。

获取原文
获取原文并翻译 | 示例

摘要

The interaction of high intensity laser pulses with matter is of current research interest not only for potential applications but also due to the interesting non-linear process that can occur with current experimental facilities. Understanding many of the non-linear processes requires significant modeling and simulation effort. We explore several aspects of laser pulse evolution and plasma response in simulations ranging from modeling laser wakefield accelerators to modeling basic ionization processes. First, we present a model that describes the onset and growth of axial modulation found experimentally during the formation of plasma channels formed using an axicon lens. We provide a systematic development that describes this new type of parametric instability and explains the pressure dependence and the mechanism for formation of these axial modulations in the channel. Next, we describe details of a new three-dimensional laser pulse evolution code that we have developed to model propagation in tenuous gas and plasma and we provide relevant information about the validation and testing of the code. We then use this new code to examine the three-dimensional structure of the laser pulse evolving in the presence of ionizing gas. In particular we present results from the first three-dimensional study of the ionization scattering instability. Finally, we examine injecting electrons into laser wakefield accelerators. We examine in detail the injection and trapping characteristics for an electron beam with an initially broad energy distribution and look at the effect of beam loading on the trapping efficiency. We present estimates for the maximum charge that can be trapped from a low energy beam with a Boltzmann type energy distribution.
机译:高强度激光脉冲与物质的相互作用不仅在潜在的应用中受到当前研究兴趣,而且由于当前的实验设备可能会发生有趣的非线性过程。了解许多非线性过程需要大量的建模和仿真工作。我们从模拟激光尾场加速器到模拟基本电离过程,从模拟中探索了激光脉冲演化和等离子体响应的几个方面。首先,我们介绍了一个模型,该模型描述了在使用轴锥透镜形成的等离子通道形成过程中通过实验发现的轴向调制的发生和增长。我们提供了描述这种新型参数不稳定性并解释压力依赖性以及通道中这些轴向调制形成机理的系统开发。接下来,我们描述新的三维激光脉冲演化代码的详细信息,该代码已开发出来,用于模拟在微弱气体和等离子体中的传播,并提供有关代码验证和测试的相关信息。然后,我们使用此新代码检查在存在电离气体的情况下演化出的激光脉冲的三维结构。特别是,我们提供了第一个三维研究电离散射不稳定性的结果。最后,我们检查将电子注入激光尾场加速器中。我们详细检查了最初具有较宽能量分布的电子束的注入和俘获特性,并研究了电子束负载对俘获效率的影响。我们提出了可以从具有Boltzmann型能量分布的低能量束中捕获的最大电荷的估计值。

著录项

  • 作者

    Cooley, James Hamilton.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Physics Optics.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号