首页> 外文学位 >Characterization of copper-ceria-samarium(0.2)cerium(0.8)oxide(1.9) anodes for direct utilization of dry hydrocarbon fuels.
【24h】

Characterization of copper-ceria-samarium(0.2)cerium(0.8)oxide(1.9) anodes for direct utilization of dry hydrocarbon fuels.

机译:用于直接利用干碳氢燃料的铜-铈-mar(0.2)铈(0.8)氧化(1.9)阳极的特性。

获取原文
获取原文并翻译 | 示例

摘要

Copper-ceria-SDC anodes have been developed and characterized for direct utilization of dry hydrocarbon fuels at low temperatures (600°C to 700°C). The functions of Cu and ceria in the anodes are examined. It is found that copper provides electronic conductivity in the anodes and its catalytic activity toward hydrocarbon (e.g. C4H10) oxidation is negligible. Ceria serves as a catalyst to enhance the anode performance with dry hydrocarbon fuels.; A theory is developed to explain Cu percolation behavior in the anodes, and suggests that Cu percolation threshold increases with anode pore size, porosity, and the average thickness of Cu particles. Conductivity-measurement results of various porous SDC samples indeed support theoretical analysis. The cell performance increases gradually when Cu loading is below the percolation threshold, and exhibits a huge leap in an anode-composition range over which Cu accomplishes percolation. This strongly indicates the importance of forming a percolated Cu structure in the anodes to conduct electrons sufficiently for achieving good cell performance.; Porous anodes with distinguishable microstructure are formed with the application of different pore formers, and the effect of anode microstructure on the cell performance is studied. At 700°C increasing anode pore size and porosity has insignificant impact on the cell performance with either H2 or C4H10. Thus, the anode performance is unlikely limited by the absolute area of a reaction zone along an electrolyte-anode interface.; It is found that impregnated copper particles in the porous Cu-ceria-SDC anodes sinter at 700°C, based on single-cell characterization, conductivity measurement and microscopic observation. The long-term stability of a SOFC with a Cu25%-ceria16%-SDC anode is studied in H2. The cell conductance and cell performance decrease with time due to the Cu sintering. A technical approach to impede the copper sintering is proposed, in which a barrier phase is built in the Cu-ceria-SDC anodes to cover the Cu particles. The experimental results corroborate the effectiveness of the proposed approach in suppressing the Cu sintering in the anodes.
机译:已经开发了氧化铈-SDC铜阳极,其特征是可以在低温(600°C至700°C)下直接利用干燥的碳氢化合物燃料。检查了阳极中Cu和二氧化铈的功能。发现铜在阳极中提供电子导电性,并且其对烃(例如C 4 H 10)氧化的催化活性可忽略不计。二氧化铈用作催化剂以提高干式碳氢燃料的阳极性能。开发了一种理论来解释阳极中的铜渗透行为,并提出了铜渗透阈值随阳极孔尺寸,孔隙率和平均粒径而增加。各种多孔SDC样品的电导率测量结果确实支持理论分析。当铜的负载量低于渗流阈值时,电池性能会逐渐提高,并且在阳极成分范围内会出现巨大的飞跃,在此范围内,铜会完成渗流。这强烈表明在阳极中形成渗滤的Cu结构以充分传导电子以实现良好电池性能的重要性。通过应用不同的成孔剂,形成具有明显微结构的多孔阳极,并研究了阳极微结构对电池性能的影响。在700°C下,使用H2或C4H10时,增加的阳极孔径和孔隙率对电池性能的影响不明显。因此,阳极性能不可能受到沿电解质-阳极界面的反应区的绝对面积的限制。基于单电池特性,电导率测量和显微镜观察,发现在多孔Cu-Ceria-SDC阳极中浸渍的铜颗粒在700°C烧结。在H2中研究了具有Cu25%-氧化铈16%-SDC阳极的SOFC的长期稳定性。由于Cu烧结,电池电导和电池性能随时间降低。提出了一种阻止铜烧结的技术方法,其中在Cu-Ceria-SDC阳极中建立势垒相以覆盖Cu颗粒。实验结果证实了该方法在抑制阳极中Cu烧结方面的有效性。

著录项

  • 作者

    Lu, Chun.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号