首页> 外文学位 >Genome composition of Glycine max and sequence diversity among cultivated and exotic accessions.
【24h】

Genome composition of Glycine max and sequence diversity among cultivated and exotic accessions.

机译:Glycine max的基因组组成以及栽培和外来种质之间的序列多样性。

获取原文
获取原文并翻译 | 示例

摘要

Soybean is an economically important crop in large portions of the world. Incorporation of soybean in to the food system in many direct and indirect ways has vastly increased the nutritional quality of low cost and plant-based diets. Therefore an enormous amount of effort has gone into increasing the yield and nutritional quality of soybeans through plant breeding over hundreds of years. De- spite this economic and nutritional importance the soybean genome was largely uncharacterized until 2004. Research described in here deals with the application of novel sequencing technologies to elucidate the soybean genome composition as an initial step to understanding the organization of the genome.;Three, partially independent, studies were performed to study soybean genome content and diversity. The first study applied 454 pyrosequencing to obtain a low coverage survey that identified repeat composition of the genome. The second study compiled data from numerous small RNA sequence datasets to follow the small RNA level regulation of soybean genes and the maintenance of genomic stability by siRNA mediated heterochromatization. The third study applied a reduced represenatation sampling strategy to identify SNP markers in the non-repetitive regions of the genome that can distinguish between soybean accessions. The method developed in this study should be generally applicable to other lines of soybean or even in other crop plants that have a fully sequenced genome. These studies, along with others reported simultaneously, and those that will be conducted in the near future, together enhance our understanding of soybean and increase our ability to manipulate this important species to our advantage.
机译:大豆是世界上大部分地区的重要经济作物。以许多直接和间接的方式将大豆掺入食品系统,大大提高了低成本和植物性饮食的营养质量。因此,通过数百年的植物育种,已经付出了巨大的努力来提高大豆的产量和营养品质。尽管具有这种经济和营养重要性,但大豆基因组直到2004年仍未得到充分表征。这里描述的研究涉及应用新型测序技术阐明大豆基因组组成,作为了解基因组组织的第一步。部分独立,进行了研究以研究大豆基因组含量和多样性。第一项研究应用454焦磷酸测序获得低覆盖率调查,该调查确定了基因组的重复组成。第二项研究汇编了来自众多小RNA序列数据集的数据,以追踪大豆基因的小RNA水平调节以及通过siRNA介导的异染色质作用维持基因组稳定性。第三项研究应用了减少重复表达的采样策略,以在基因组的非重复区域识别SNP标记,从而可以区分大豆种质。这项研究中开发的方法通常应适用于其他大豆系,甚至适用于具有完全测序基因组的其他农作物。这些研究以及与之同时进行的其他研究,以及将在不久的将来进行的研究,共同加深了我们对大豆的了解,并增强了我们利用这一重要物种对我们有利的能力。

著录项

  • 作者

    Varala, Kranthi Kiran.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Biology Genetics.;Biology Bioinformatics.;Agriculture Plant Culture.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号