首页> 外文学位 >Systems design of transformation toughened blast-resistant naval hull steels.
【24h】

Systems design of transformation toughened blast-resistant naval hull steels.

机译:变质增韧防爆船体钢的系统设计。

获取原文
获取原文并翻译 | 示例

摘要

A systems approach to computational materials design has demonstrated a new class of ultratough, weldable secondary hardened plate steels combining new levels of strength and toughness while meeting processability requirements. A first prototype alloy has achieved property goals motivated by projected naval hull applications requiring extreme fracture toughness (Cv > 85 ft-lbs (115 J) corresponding to KId > 200 ksi.in1/2 (220 MPa.m1/2)) at strength levels of 150--180 ksi (1034--1241 MPa) yield strength in weldable, formable plate steels.; A theoretical design concept was explored integrating the mechanism of precipitated nickel-stabilized dispersed austenite for transformation toughening in an alloy strengthened by combined precipitation of M2C carbides and BCC copper both at an optimal ∼3nm particle size for efficient strengthening. This concept was adapted to plate steel design by employing a mixed bainitic/martensitic matrix microstructure produced by air-cooling after solution-treatment and constraining the composition to low carbon content for weldability. With optimized levels of copper and M2C carbide formers based on a quantitative strength model, a required alloy nickel content of 6.5 wt% was predicted for optimal austenite stability for transformation toughening at the desired strength level of 160 ksi (1100 MPa) yield strength. A relatively high Cu level of 3.65 wt% was employed to allow a carbon limit of 0.05 wt% for good weldability.; Hardness and tensile tests conducted on the designed prototype confirmed predicted precipitation strengthening behavior in quench and tempered material. Multi-step tempering conditions were employed to achieve the optimal austenite stability resulting in significant increase of impact toughness to 130 ft-lb (176 J) at a strength level of 160 ksi (1100 MPa). Comparison with the baseline toughness-strength combination determined by isochronal tempering studies indicates a transformation toughening increment of 60% in Charpy energy. Predicted Cu particle number densities and the heterogeneous nucleation of optimal stability high Ni 5 nm austenite on nanometer-scale copper precipitates in the multi-step tempered samples was confirmed using three-dimensional atom probe microscopy. Charpy impact tests and fractography demonstrate ductile fracture with C v > 90 ft-lbs (122 J) down to -40°C, with a substantial toughness peak at 25°C consistent with designed transformation toughening behavior. The properties demonstrated in this first prototype represent a substantial advance over existing naval hull steels.
机译:一种用于计算材料设计的系统方法已经证明了一类新型的超韧性,可焊接的二次硬化钢板,其强度和韧性达到了新的水平,同时满足了可加工性要求。第一种原型合金已经达到了预期的海军船体应用的性能目标,这些应用要求在强度上要求极高的断裂韧性(Cv> 85 ft-lbs(115 J),对应于KId> 200 ksi.in1 / 2(220 MPa.m1 / 2))在150--180 ksi(1034--1241 MPa)的水平下,可焊接可成形钢板的屈服强度;探索了一种理论设计概念,将沉淀的镍稳定的分散奥氏体的机理整合到了合金中,该合金是通过M2C碳化物和BCC铜的联合沉淀而形成的,合金的最佳粒径约为3nm,从而有效地强化了合金。通过采用固溶处理后通过空气冷却产生的贝氏体/马氏体混合显微组织,并将该组合物的碳含量限制在较低的范围内,以实现可焊接性,该概念适用于钢板设计。在基于定量强度模型的铜和M2C碳化物成形体的最佳水平下,预计在要求的强度水平为160 ksi(1100 MPa)时,要求的合金镍含量为6.5 wt%,才能获得最佳的奥氏体稳定性,以实现相变增韧。为了获得良好的焊接性,使用了相对较高的Cu含量3.65重量%,以使碳极限为0.05重量%。在设计的原型上进行的硬度和拉伸测试证实了在淬火和回火材料中预计的析出强化行为。采用多步回火条件以获得最佳的奥氏体稳定性,从而在160 ksi(1100 MPa)的强度水平下将冲击韧性显着提高至130 ft-lb(176 J)。与通过等时回火研究确定的基线韧性-强度组合的比较表明,夏比能量的相变增韧增量为60%。使用三维原子探针显微镜,证实了多步回火样品中纳米级铜沉淀物上预测的Cu粒子数量密度和最佳稳定性的高稳定性Ni 5 nm高奥氏体的异质形核。夏比冲击试验和断裂分析表明,在低至-40°C的条件下C v> 90 ft-lbs(122 J)的延性断裂,在25°C时具有明显的韧性峰,与设计的相变增韧行为一致。在第一个原型中展示的性能代表了与现有海军船体钢相比的重大进步。

著录项

  • 作者

    Saha, Arup.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Materials Science.; Engineering Marine and Ocean.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 245 p.
  • 总页数 245
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;海洋工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号