首页> 外文学位 >Cognition and cooperation in wireless multi-user Gaussian networks.
【24h】

Cognition and cooperation in wireless multi-user Gaussian networks.

机译:无线多用户高斯网络中的认知与合作。

获取原文
获取原文并翻译 | 示例

摘要

Driven by the demand for bandwidth-hungry multimedia and internet-related wireless data applications, communication engineers seek to maximally exploit the spectral resources in all available dimensions. Two approaches, cognitive radio (cognition) and cooperative communications (cooperation), have been recently shown to be able to significantly improve the spectral efficiency. In this dissertation, we evaluate the capacity gains of the Gaussian interference channel by using either a cognition or cooperation approach.;For cognitive radio, we consider a MIMO Gaussian Z-interference channel (ZIC) as shown in Fig. 1.2, when transmit node C has imperfect cognitive knowledge of the signal sent by transmit node A. First, we compute the capacity of this channel assuming non-causal but noisy knowledge at node C of node A's signal. We then compute the achievable rate for a causal cognitive strategy: This achievable rate is derived using a two-phase transmission scheme in which node C uses a combination of a linear minimum mean square error (LMMSE) estimator and dirty paper code and node D employs a combination of LMMSE estimator and partial interference canceler. The achievable rate is studied in two different cases: (i) Node C operates in full-duplex mode and (ii) Node C operates in half-duplex mode. To quantify the performance of the proposed strategy, we compute simple lower and upper bounds on the capacity of this channel. Similar to interference channel, the achievable rate of the cognitive ZIC varies non-monotonically with the interference. Specifically, the achievable rate first decreases with the channel gain between nodes A and D and then begins to increase beyond a certain threshold. The difference in achievable rate between full-duplex and half-duplex transmission is also numerically evaluated.;For cooperative communication, we evaluate the capacity region of a two user Gaussian interference channel with node cooperation. We develop half-duplex schemes and their respective achievable regions and upper bounds for the case when the system allows transmitter cooperation (TXC) only, receiver cooperation (RXC) only and both transmitter and receiver cooperation (TXRXC). We show that by using our TXC scheme, there is significant capacity improvement compared to the previous results, especially when the cooperation link is strong. Further, we quantify the sum rate increase of TXC, RXC and TXRXC with respect to the cooperation channel gain. If the cooperation channel gain is infinity, the rates of all three schemes achieve their respective outer bounds. It is also shown that TXC provides larger capacity gain over RXC under the same channel and power conditions. With both TXRXC, significant gain in achievable rates can further be reaped over TXC.;We also investigate another common cooperative communication strategy, i.e., the cooperation by relays. We introduce a channel model called the Multi-source Multi-relay channel. In this channel, the transmit signals of all users are received at multiple distinct relays. Each of these transmit signals can be either decode-and-forward (DF) or amplify and forward (AF) at any one or a combination of the relays to the destination. We compute the achievable regions for both DF and AF strategies and compare them under various channel scenarios.
机译:在对带宽需求巨大的多媒体和与互联网相关的无线数据应用需求的推动下,通信工程师寻求在所有可用维度上最大限度地利用频谱资源。最近已经显示出两种方法,认知无线电(认知)和合作通信(合作)能够显着提高频谱效率。本文采用认知方法或合作方法对高斯干扰信道的容量增益进行了评估。对于认知无线电,当发送节点时,我们考虑了如图1.2所示的MIMO高斯Z干扰信道(ZIC)。 C对发送节点A发送的信号的认知知识不完善。首先,我们假设该节点A的信号C在节点C处无因果但有噪声,因此计算此信道的容量。然后,我们为因果认知策略计算可达到的比率:该可达到的比率是使用两阶段传输方案得出的,其中节点C使用线性最小均方误差(LMMSE)估计器和脏纸代码的组合,而节点D使用LMMSE估计器和部分干扰消除器的组合。在两种不同情况下研究了可达到的速率:(i)节点C在全双工模式下运行,以及(ii)节点C在半双工模式下运行。为了量化所提出策略的性能,我们计算了此通道容量的简单下限和上限。类似于干扰信道,认知ZIC的可实现速率随干扰非单调变化。具体而言,可达到的速率首先随着节点A和D之间的信道增益而降低,然后开始增加超过某个阈值。还通过数值评估了全双工和半双工传输之间可达到的速率的差异。对于协作通信,我们通过节点协作评估了两个用户高斯干扰信道的容量区域。当系统仅允许发射机协作(TXC),仅接收机协作(RXC)以及发射机和接收机协作(TXRXC)时,我们将开发半双工方案及其各自可实现的区域和上限。我们证明,通过使用我们的TXC方案,与以前的结果相比,容量有了显着提高,尤其是在合作链接牢固的情况下。此外,我们相对于协作信道增益来量化TXC,RXC和TXRXC的总速率增加。如果协作信道增益为无穷大,则所有三种方案的速率均达到其各自的边界。还显示出,在相同的信道和功率条件下,TXC比RXC提供更大的容量增益。通过这两种TXRXC,可以进一步获得比TXC更高的可实现速率增益;我们还研究了另一种常见的协作通信策略,即中继的协作。我们介绍一种称为多源多中继通道的通道模型。在该信道中,所有用户的发射信号在多个不同的中继器处接收。这些传输信号中的每一个都可以在到达目的地的任何一个中继站或中继站的组合中进行解码和转发(DF)或放大转发(AF)。我们为DF和AF策略计算可达到的区域,并在各种渠道情况下进行比较。

著录项

  • 作者

    Peng, Yong.;

  • 作者单位

    Southern Methodist University.;

  • 授予单位 Southern Methodist University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号