首页> 外文学位 >Electrical and optical probing of extremely large planar polymer light-emitting electrochemical cells.
【24h】

Electrical and optical probing of extremely large planar polymer light-emitting electrochemical cells.

机译:大型平面聚合物发光电化学电池的电学和光学探测。

获取原文
获取原文并翻译 | 示例

摘要

Polymer light-emitting electrochemical cells (LECs) are unique solid-state light-emitting devices operating on the principle of in situ electrochemical doping and the formation of a p-n junction. Compared to conventional polymer light-emitting diodes, LECs possess some favorable device characteristics, making them attractive candidates for flat panel display applications. However, the underlying operating mechanism of LECs has been the subject of intense scrutiny and debate. The extremely large planar devices demonstrated by Dr. Gao's group offer an unparalleled spatial resolution for investigating the electrochemical doping process. With time-lapse fluorescence imaging, our group has demonstrated the existence of the electrochemical doping and the p-n junction in an operating LEC. However, the LEC electronic structure has never been adequately studied and understood. In this thesis, the original research on the electrical and optical scanning measurements on extremely large planar LECs is described.;A fresh LEC film has, for the first time, been turned on to form a light-emitting p-n junction by biasing a pair of probes that form direct contacts with the LEC film. The quasi-one-dimensional probe tips allow insight into the electrochemical doping mechanism, without being disturbed by imperfections in the pre-deposited electrodes. Time-lapse fluorescence imaging has exhibited p- and n-doping of various shapes and shades, p-n junction electroluminescence, and the effects of bias reversal. The observed doping reaction kinetics suggests that n-doping is reaction-limited whereas p-doping is diffusion-limited. Furthermore, the electric potential and conductivity distributions of extremely large planar LECs have been mapped. The results show that the p-doping is more conductive than n-doping. More importantly, The results provide the first evidence that the p-n junction is indeed a graded one with decreasing conductivity and doping concentration from the electrode contact to the metallurgical junction. In addition, the optical beam induced current (OBIC) measurement has been explored to map the built-in electric field of extremely large planar LECs. This result clearly shows that a large electric field exists only around the junction region rather than in the electrode region. Moreover, the result confirms that the LEC electronic structure is a graded p-n junction.
机译:聚合物发光电化学电池(LEC)是独特的固态发光器件,其工作原理为原位电化学掺杂和形成p-n结。与传统的聚合物发光二极管相比,LEC具有一些良好的器件特性,使其成为平板显示应用的有吸引力的候选者。但是,LEC的基本运行机制一直受到严格的审查和辩论。高博士小组展示的超大型平面器件为研究电化学掺杂过程提供了无与伦比的空间分辨率。通过延时荧光成像,我们的小组证明了在运行的LEC中存在电化学掺杂和p-n结。但是,LEC的电子结构从未得到充分的研究和理解。本论文描述了对极大型平面LEC的电学和光学扫描测量的原始研究。首次打开新鲜的LEC膜,通过偏置一对发光二极管来形成发光pn结。与LEC膜直接接触的探头。准一维探针尖端可洞悉电化学掺杂机制,而不会受到预沉积电极中缺陷的干扰。延时荧光成像显示出各种形状和阴影的p型和n型掺杂,p型n结电致发光以及偏压反转的影响。观察到的掺杂反应动力学表明,n掺杂是反应受限的,而p掺杂是扩散受限的。此外,已经绘制了非常大的平面LEC的电势和电导率分布。结果表明,p掺杂比n掺杂更具导电性。更重要的是,该结果提供了第一个证据,即p-n结确实是渐变的,从电极触点到冶金结的电导率和掺杂浓度都在降低。此外,已经探索了光束感应电流(OBIC)的测量方法,以绘制出非常大的平面LEC的内置电场。该结果清楚地表明,仅在结区域周围而不在电极区域中存在大电场。而且,该结果证实了LEC电子结构是渐变的p-n结。

著录项

  • 作者

    Hu, Yufeng.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Physics Condensed Matter.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号