首页> 外文学位 >The molecular mechanism of FbpABC iron(3+) transport in Gram negative pathogenic bacteria.
【24h】

The molecular mechanism of FbpABC iron(3+) transport in Gram negative pathogenic bacteria.

机译:FbpABC铁(3+)在革兰氏阴性致病细菌中运输的分子机制。

获取原文
获取原文并翻译 | 示例

摘要

Iron is an essential nutrient required by nearly all forms of life. Pathogenic Haemophilus influenzae, Neisseria spp. (N. gonorrhoeae and N. meningitidis) and other Gram-negative bacteria utilize a periplasm-to-cytosol siderophore-independent FbpABC iron transporter in the acquisition of host-transferrin Fe3+ . The FbpABC transporter is composed of a ferric-ion binding protein (FbpA) and an ABC-transporter consisting of a membrane permease (FbpB) and an ATP-binding protein (FbpC). The association between iron acquisition and human disease suggests that FbpABC may be an important target for antimicrobial drug development. The goal of this dissertation was to develop a detailed model of the molecular mechanism of FbpABC Fe3+ transport. The initial aim involved investigation of the structural basis of hFbpA Fe 3+-binding and release. Through crystallographic and biochemical analyses of Fe3+-free apo-hFbpA, a structural model for the Fe 3+-binding process was devised incorporating information from the previously solved structure of Fe3+-bound holo-hFbpA. This process involves a synergistic anion which binds to apo-hFbpA serving to preorder the binding site prior to Fe3+-loading. Fe3+ coordination proceeds through a kinetically ordered mechanism resulting in a stable Fe3+FbpPO4 ternary complex. The second aim involved development of an experimental model system of hFbpABC transport in Escherichia coli and investigation of the dynamic transport mechanism. Using functional assays, the metal specificity, energy requirements, kinetics of hFbpABC transport and the functional effects of an hFbpA Fe 3+ binding site mutant (hFbpAY196I) were investigated. It was concluded that the specificity and high affinity binding characteristics suggest the transporters function as specialized transporters satisfying the strict chemical requirements of Fe3+ chelation and membrane transport. The final aim involved implementation of functional assays combined with mutagenesis to investigate critical residues within the hFbpB membrane permease. Both site-directed mutagenesis and a novel mutant selection technique based on resistance to the toxic Fe3+ analog Ga3+ were utilized. Computational analysis was used to construct a topological model of the permease and informative residues were mapped to this model. The results of these studies have led to a refined model of the FbpABC Fe3+ transporter and important aspects relative to the molecular mechanism of transport are discussed.
机译:铁是几乎所有形式的生命所必需的必需营养素。致病性流感嗜血杆菌,奈瑟氏菌属。 (淋病奈瑟氏球菌和脑膜炎奈瑟氏球菌)和其他革兰氏阴性细菌在获取宿主运铁蛋白Fe3 +时利用了不依赖周质到胞质铁载体的FbpABC铁转运蛋白。 FbpABC转运蛋白由铁离子结合蛋白(FbpA)和ABC转运蛋白组成,而ABC转运蛋白由膜通透酶(FbpB)和ATP结合蛋白(FbpC)组成。铁摄入与人类疾病之间的关联表明FbpABC可能是抗菌药物开发的重要目标。本文的目的是建立FbpABC Fe3 +转运分子机制的详细模型。最初的目的是研究hFbpA Fe 3+结合和释放的结构基础。通过对无Fe3 +的载脂蛋白hFbpA的晶体学和生化分析,设计了Fe 3+结合过程的结构模型,并结合了先前解析的与Fe3 +结合的完整hfbpA的结构信息。该过程涉及协同阴离子,其与载脂蛋白-hFbpA结合以在装载Fe3 +之前对结合位点进行预排序。 Fe3 +配位通过动力学有序的机制进行,从而形成稳定的Fe3 + FbpPO4三元复合物。第二个目标涉及开发hFbpABC在大肠杆菌中运输的实验模型系统,并研究动态运输机制。使用功能测定法,研究了金属特异性,能量需求,hFbpABC转运的动力学以及hFbpA Fe 3+结合位点突变体(hFbpAY196I)的功能作用。结论是,特异性和高亲和力结合特性表明转运蛋白起专门的转运蛋白的作用,满足Fe3 +螯合和膜转运的严格化学要求。最终目标涉及结合诱变功能分析的实施,以研究hFbpB膜通透酶中的关键残基。利用定点诱变和基于对有毒Fe3 +类似物Ga3 +的抗性的新型突变体选择技术。使用计算分析来构建通透酶的拓扑模型,并将信息丰富的残基映射到该模型。这些研究的结果导致了FbpABC Fe3 +转运蛋白的精确模型,并讨论了有关转运分子机理的重要方面。

著录项

  • 作者

    Anderson, Damon Scott.;

  • 作者单位

    University of Pittsburgh.;

  • 授予单位 University of Pittsburgh.;
  • 学科 Chemistry Biochemistry.; Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;微生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号