首页> 外文学位 >Dual-porosity and dual-permeability poromechanics solutions for problems in laboratory and field applications.
【24h】

Dual-porosity and dual-permeability poromechanics solutions for problems in laboratory and field applications.

机译:针对实验室和现场应用中的问题的双孔双渗透渗透力学解决方案。

获取原文
获取原文并翻译 | 示例

摘要

In this work, a study of anisotropic dual-porosity and dual-permeability poromechanics is presented through generalized analytical solutions for selected problems in laboratory and field applications. For example, the solution to the inclined wellbore geometry with standard applications in the oil and gas industry for drilling stability or consolidation in naturally fractured rock formations are derived and illustrated. In addition, the dualporosity and dual-permeability poromechanics solutions to common laboratory testing setups in geomechanics and biomechanics for purposes of rock and bio-tissue characterization are developed for rectangular strip, solid and hollow cylinder geometries.;The behaviors of naturally fractured rock formations or the responses of the well known dual-porosity bone structure are modeled as dual-porosity and dual-permeability poroelastic media that fully couples the secondary porosity medium's deformation, fluid flow and interporosity exchange processes. For chemically active fractured media, e.g., clay, shale, or biomaterial, chemical interaction effects including osmotic and solute transport in both the primary porosity (matrix) and secondary porosity (fracture) are addressed based on non-equilibrium thermodynamics. Thermohydromechanical coupling under non-isothermal condition is incorporated by adopting a "single-temperature" approach in which a single representative thermodynamic continuum is argued to be sufficient to describe the thermally induced responses of a naturally fractured rock formation.;The physical and mathematical models are used to find poromechanics analytical solutions for pore pressure, fluid flux, stress, and displacement, in addition to solute flux for chemically active material or temperature for non-isothermal condition to the above problem geometries. These solutions are general and can be tailored to simulate specific field problems or experimental testing. For instance, the inclined wellbore solutions include boundary conditions for simulating openhole drilling and fluid injection or withdrawal. On the other hand, the solutions for laboratory testing of rectangular and cylinder geometries account for two primary axial loading modes, namely, stroke control or stress relaxation and load control or creep test. The rectangular strip solution is also shown to simplify to the classical one-dimensional consolidation in soil mechanics.;For non-reactive dual-porous material under isothermal condition, generic dualporomechanics results are plotted and compared with single-poromechanics counterpart representing a homogenous isotropic medium when applicable. Parametric analyses are also carried out through the responses of a solid cylinder under unconfined compression to evaluate the effects of material anisotropy and dimensionless dual-poroelastic parameters such as permeability ratio, storage ratio, and interporosity coefficient. For chemically active fractured formation, the analyses is focused on the impacts of chemical salinity gradients via osmotic and solute transport on pore pressure and effective stress distributions near the wellbore or fluid/solute flux and displacement of solid cylinder under axial-flow-only oedometer testing setup. Finally, the effects of temperature gradients manifested through thermal expansion/contraction and conductive heat transport are assessed using the analytical solutions for inclined wellbore and rectangular strip geometries. Furthermore, the significance of heat convection is evaluated numerically and displayed.;Application-wise, the inclined wellbore solution is used to perform time-dependent wellbore stability analysis for drilling through chemically active fractured rock formations under non-isothermal conditions. The hollow cylinder is applied to study elastic consolidation of a producing naturally fractured reservoir and associated implications on porosity and permeability reduction in the near-wellbore region. Finally, some realistic quasi-static loading conditions commonly encountered in experimental testing and field applications such as cyclic, linear ramping, and exponentially decayed are demonstrated via the solutions of unconfined solid cylinder.
机译:在这项工作中,通过针对实验室和现场应用中选定问题的广义分析解决方案,提出了各向异性双孔隙率和双渗透性孔隙力学的研究。例如,推导并说明了在石油和天然气工业中用于钻井稳定性或固结在自然裂缝岩层中的标准应用的倾斜井眼几何形状的解决方案。此外,针对矩形和实心和中空圆柱体的几何形状,开发了针对岩石和生物组织特征的地质力学和生物力学中常见的实验室测试装置的双孔隙度和双渗透性岩体力学解决方案。众所周知,双重孔隙骨结构的响应被建模为双重孔隙和双重渗透性孔隙弹性介质,它们完全耦合了次生孔隙介质的变形,流体流动和孔隙间交换过程。对于具有化学活性的裂缝性介质(例如粘土,页岩或生物材料),基于非平衡热力学解决了主要孔隙度(基质)和次要孔隙度(裂缝)中包括渗透和溶质运移在内的化学相互作用效应。通过采用“单温度”方法并入非等温条件下的热流体力学耦合,认为单个代表性的热力学连续体足以描述自然裂缝岩层的热诱导响应。物理和数学模型是除了针对上述问题几何形状的化学活性物质的溶质通量或非等温条件下的温度以外,还用于寻找孔隙压力,流体通量,应力和位移的多孔力学分析解决方案。这些解决方案是通用的,可以定制以模拟特定的现场问题或实验测试。例如,倾斜的井眼解决方案包括用于模拟裸眼钻井和流体注入或抽出的边界条件。另一方面,用于矩形和圆柱几何形状的实验室测试解决方案考虑了两种主要的轴向加载模式,即行程控制或应力松弛以及负载控制或蠕变测试。还显示了矩形条形解决方案,简化了土壤力学中的经典一维固结。;对于等温条件下的非反应性双孔材料,绘制了通用双孔力学结果并将其与代表均质各向同性介质的单孔力学相对应当适用。还通过实心圆柱体在无限制压缩下的响应来进行参数分析,以评估材料各向异性和无量纲双孔弹性参数(例如渗透率,储藏率和孔隙率系数)的影响。对于具有化学活性的裂缝地层,分析重点在于渗透和溶质运移对化学盐度梯度的影响,包括仅在轴向流动的渗压计测试下井眼附近的孔隙压力和有效应力分布或流体/溶质通量以及固体圆柱体的位移设定。最后,使用倾斜井眼和矩形条几何形状的分析解决方案评估了通过热膨胀/收缩和传导热传递所表现出的温度梯度的影响。此外,通过数值计算和显示了热对流的重要性。在应用方面,倾斜井眼解决方案用于在非等温条件下通过化学活性裂隙岩层进行随时间变化的井眼稳定性分析。中空圆柱体用于研究生产中的天然裂缝性储层的弹性固结及其对近井眼区域孔隙度和渗透率降低的影响。最后,通过无侧限实心圆柱体的解法,证明了一些在实验测试和现场应用中经常遇到的逼真的准静态载荷条件,例如循环,线性斜坡和指数衰减。

著录项

  • 作者

    Nguyen, Vinh Xuan.;

  • 作者单位

    The University of Oklahoma.;

  • 授予单位 The University of Oklahoma.;
  • 学科 Engineering Geological.;Biophysics Biomechanics.;Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 297 p.
  • 总页数 297
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号