首页> 外文学位 >Fabrication, performance and degradation mechanism of aluminum gallium nitride/gallium nitride heterostructure field-effect transistors.
【24h】

Fabrication, performance and degradation mechanism of aluminum gallium nitride/gallium nitride heterostructure field-effect transistors.

机译:氮化铝镓/氮化镓异质结构场效应晶体管的制备,性能和降解机理。

获取原文
获取原文并翻译 | 示例

摘要

Gallium nitride (GaN) has attracted a lot of attention as the next generation of semiconductor material for microwave power application. The unique and superior material properties of GaN and its heterostructure, such as excellent transport property, high breakdown voltage and sheet carrier concentration, and thermal and mechanical stabilities, enable AlGaN/GaN heterostructure field effect transistors (HFETs) to deliver unprecedented levels of microwave power performance. Potential applications include ultra-wide bandwidth communications and radar systems, wireless base stations, and communications satellites.; Tremendous efforts to realize the potential of Al-GaN/GaN HFETs have been made over the last decade focusing on improving microwave power performance via optimizing material growth and semiconductor processing technologies. As the device performance is getting mature, the device's reliability becomes a major concern for manufacturability of commercially available AlGaN/GaN HFETs. However, comprehensive study on the reliability of these devices is still lacking.; This dissertation describes the fabrication, performance and degradation characteristics and mechanism of AlGaN/GaN HFETs. The devices were fabricated with alloyed Ti/Al/Ti/Au ohmic contact and Ni/Au mushroom gate contact using E-beam lithography. The device's microwave performance was significantly improved after SiN passivation due to reduced surface effects. Several degradation modes, primarily a decrease of the output current and microwave output power density, were observed under various electrical stress tests including high current stress, high field stress, and RF overdrive. To further investigate the physical mechanism of observed degradations, SiN passivation, pulsed IV (gate lag), low frequency noise measurements, deep level transient spectroscopy (DLTS), and scanning kelvin probe microscopy (SKPM) have all been employed with hot electron stress testing. The results clearly demonstrated that charge accumulation and trap creation at the semiconductor surface and interface induced by hot electron effects are responsible for observed degradation.
机译:氮化镓(GaN)作为下一代微波功率应用半导体材料已引起了广泛的关注。 GaN及其异质结构的独特和优越的材料性能,例如出色的传输性能,高击穿电压和薄片载流子浓度以及热和机械稳定性,使AlGaN / GaN异质结构场效应晶体管(HFET)能够提供前所未有的微波功率性能。潜在的应用包括超宽带通信和雷达系统,无线基站和通信卫星。在过去的十年中,人们为实现Al-GaN / GaN HFET的潜力做出了巨大的努力,致力于通过优化材料生长和半导体加工技术来改善微波功率性能。随着器件性能的日益成熟,器件的可靠性成为商用AlGaN / GaN HFET的可制造性的主要问题。但是,仍缺乏对这些设备可靠性的全面研究。本文介绍了AlGaN / GaN HFET的制备,性能,降解特性及机理。使用电子束光刻技术,利用合金化的Ti / Al / Ti / Au欧姆接触和Ni / Au蘑菇栅接触制造器件。 SiN钝化后,由于降低了表面效应,该设备的微波性能得到了显着改善。在各种电应力测试下,观察到几种退化模式,主要是输出电流和微波输出功率密度的降低,包括高电流应力,高场应力和RF过驱动。为了进一步研究观察到的降解的物理机制,SiN钝化,脉冲IV(门延迟),低频噪声测量,深电平瞬态光谱法(DLTS)和扫描开尔文探针显微镜(SKPM)均已用于热电子应力测试中。结果清楚地表明,由热电子效应引起的在半导体表面和界面处的电荷积累和陷阱形成是观察到的降解的原因。

著录项

  • 作者

    Kim, Hyungtak.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号