首页> 外文学位 >Trajectory design in the Earth-Moon system and lunar South Pole coverage.
【24h】

Trajectory design in the Earth-Moon system and lunar South Pole coverage.

机译:地球月球系统的轨迹设计和南极月球覆盖范围。

获取原文
获取原文并翻译 | 示例

摘要

Spacecraft trajectory design is evolving and innovation is increasingly driven by computational methods. As new regimes are explored, numerical techniques are most often developed to cope with undesirable behavior in sensitive dynamical systems. Nonlinear systems with sensitive dynamics are ubiquitous spacecraft trajectory modeling, where the models include, for example, perturbations due to an aspherical central body, multi-body perturbations, and solar wind.;Numerical techniques are particularly useful in designing trajectories for lunar south pole coverage. Dual-spacecraft constellations include either two spacecraft in lunar "frozen" orbits or in multi-body orbits near the libration points of the Earth-Moon Restricted 3-Body Problem (R3BP). Alternatively, single spacecraft constellations, or "pole-sitters," require only one spacecraft for continuous surveillance and a control source for displacing the vehicle below the trans- or cis-lunar libration point. The control source might originate from a solar sail or an electric thruster. A spacecraft equipped with an electric thruster has an added advantage in that it can be deployed immediately and is eventually inserted into a larger constellation for continued surveillance.;The following investigation includes many numerical techniques that are useful for trajectory design. The methods are applied for a thorough analysis of motion in the Earth-Moon R3BP, including dual-spacecraft and pole-sitter missions for lunar south pole coverage, where continuous line-of-sight access between a lunar ground station and the Earth is required. The various options for coverage are explored in higher-fidelity models and evaluated in terms of elevation angle and altitude from the Shackleton crater near the lunar south pole. The choice of constellation is driven by the mission requirements.
机译:航天器的轨迹设计正在不断发展,创新越来越受到计算方法的推动。随着新机制的探索,最常开发数值技术来应对敏感动力系统中的不良行为。具有灵敏动力学的非线性系统是普遍存在的航天器轨迹模型,其中的模型包括例如非球面中心体引起的扰动,多体扰动和太阳风;数值技术在设计月球南极覆盖面的轨迹时特别有用。双航天器星座包括在月球“冻结”轨道上的两个航天器,或在月球受限三体问题(R3BP)的解放点附近的多体轨道中的两个航天器。可替代地,单个航天器星座或“极地保卫者”仅需要一个航天器进行连续监视,并需要一个控制源来将飞行器移动到跨月或顺月向解放点以下。控制源可能来自太阳帆或电动推进器。配备有电动推进器的航天器还有一个额外的优势,即它可以立即部署,并最终插入更大的星座中以进行持续监视。;以下研究包括许多可用于轨迹设计的数值技术。这些方法适用于对地月R3BP中的运动进行全面分析,包括双飞船和保卫月球的任务进行月球南极覆盖,这需要在月球地面站与地球之间进行连续视线访问。在高保真度模型中探索了覆盖的各种选项,并根据月球南极附近的沙克尔顿陨石坑的仰角和高度评估了覆盖率。星座的选择由任务要求决定。

著录项

  • 作者

    Grebow, Daniel J.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 254 p.
  • 总页数 254
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号