首页> 外文学位 >Dynamic modeling, simulation and control design of a parafoil-payload system for ship launched aerial delivery system (SLADS).
【24h】

Dynamic modeling, simulation and control design of a parafoil-payload system for ship launched aerial delivery system (SLADS).

机译:舰载空投系统(SLADS)的翼型有效载荷系统的动态建模,仿真和控制设计。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this research was to develop a high-fidelity dynamic model of a parafoil-payload system with respect to its application for the Ship Launched Aerial Delivery System (SLADS). SLADS is a concept in which cargo can be transfered from ship to shore using a parafoil-payload system. It is accomplished in two phases: An initial towing phase when the glider follows the towing vessel in a passive lift mode and an autonomous gliding phase when the system is guided to the desired point. While many previous researchers have analyzed the parafoil-payload system when it is released from another airborne vehicle, limited work has been done in the area of towing up the system from ground or sea. One of the main contributions of this research was the development of a nonlinear dynamic model of a towed parafoil-payload system. After performing an extensive literature review of the existing methods of modeling a parafoil-payload system, a five degree-of-freedom model was developed. The inertial and geometric properties of the system were investigated to predict accurate results in the simulation environment. Since extensive research has been done in determining the aerodynamic characteristics of a paraglider, an existing aerodynamic model was chosen to incorporate the effects of air flow around the flexible paraglider wing. During the towing phase, it is essential that the parafoil-payload system follow the line of the towing vessel path to prevent an unstable flight condition called 'lockout'. A detailed study of the causes of lockout, its mathematical representation and the flight conditions and the parameters related to lockout, constitute another contribution of this work. A linearized model of the parafoil-payload system was developed and used to analyze the stability of the system about equilibrium conditions. The relationship between the control surface inputs and the stability was investigated. In addition to stability of flight, one more important objective of SLADS is to tow up the parafoil-payload system as fast as possible. The tension in the tow cable is directly proportional to the rate of ascent of the parafoil-payload system. Lockout instability is more favorable when tow tensions are large. Thus there is a tradeoff between susceptibility to lockout and rapid deployment. Control strategies were also developed for optimal tow up and to maintain stability in the event of disturbances.
机译:这项研究的目的是针对机翼有效载荷系统开发高保真动态模型,以用于其在舰载空中交付系统(SLADS)中的应用。 SLADS是一种概念,在这种概念中,可以使用高效翼型有效载荷系统将货物从船上转移到岸上。它分两个阶段完成:滑翔机以被动升程模式跟随拖船时的初始牵引阶段,以及将系统引导至所需位置时的自主滑行阶段。尽管许多以前的研究人员已经分析了从另一架空运车辆上释放的翼型有效载荷系统,但是在将系统从地面或海上拖走方面所做的工作很少。这项研究的主要贡献之一是开发了牵引式翼型有效载荷系统的非线性动力学模型。在对现有的翼型有效载荷系统建模方法进行大量文献综述后,开发了五自由度模型。研究了系统的惯性和几何特性,以预测仿真环境中的准确结果。由于已经在确定滑翔伞的空气动力学特性方面进行了广泛的研究,因此选择了现有的空气动力学模型来考虑柔性滑翔伞机翼周围气流的影响。在拖曳阶段,至关重要的是,翼型有效载荷系统应遵循拖船路径,以防止称为“停飞”的不稳定飞行状况。对锁定原因的详细研究,其数学表示以及飞行条件和与锁定有关的参数构成了这项工作的另一项贡献。建立了翼型有效载荷系统的线性模型,并将其用于分析系统在平衡条件下的稳定性。研究了控制面输入与稳定性之间的关系。除了飞行稳定性外,SLADS的另一个重要目标是尽快拉升机翼有效载荷系统。拖缆中的张力与翼型有效载荷系统的上升速度成正比。当牵引张力大时,锁定不稳定性更为有利。因此,在锁定的敏感性和快速部署之间需要权衡。还开发了控制策略,以在发生干扰时优化拖曳并保持稳定性。

著录项

  • 作者

    Puranik, Anand S.;

  • 作者单位

    Michigan Technological University.;

  • 授予单位 Michigan Technological University.;
  • 学科 Engineering Aerospace.;Engineering System Science.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号