首页> 外文学位 >Nonlinear dynamics, control and shock mitigation in microelectromechanical and nanoelectromechanical resonant devices.
【24h】

Nonlinear dynamics, control and shock mitigation in microelectromechanical and nanoelectromechanical resonant devices.

机译:微机电和纳米机电谐振装置中的非线性动力学,控制和减震。

获取原文
获取原文并翻译 | 示例

摘要

Microelectromechanical (MEM) and Nanoelectromechanical (NEM) resonators represent a major class of MEM/NEM devices. Due to their nature of low damping and the presence of nonlinear potential fields, these devices are inherently nonlinear. From engineering point of view, to utilize the nonlinear behavior, it is critical to understand their dynamical mechanism as well as to design appropriate control scheme to operate the device in the desired nonlinear states. On the other hand, it is also necessary to devise schemes to prevent the undesired failure mode caused by nonlinear effects. In this work, the inherent nonlinear dynamical behaviors, methods for controlling nonlinear dynamics and techniques for mitigating mechanical shock are investigated in nonlinear MEM/NEM resonators. The specific applications explored within this work are electrostatically driven nanowire, coupled micro cantilever arrays and doubly clamped beam resonators.;For electrostatically driven nanowire, a detailed bifurcation analysis is carried out in a multiphysics model. One finding is that the nano-scale system can exhibit a vibration state with extremely strong chaotic characteristic. Potential applications of this vibration state are articulated.;For a micro cantilever resonator, the combination of mechanical nonlinearity and electrical driving force can lead to bistability. In this work, a robust control scheme based on analytic theory is proposed to place the system in the high-energy state.;For a microelectromechanical (MEM) resonator arrays, detailed analysis of a new mechanism of creating intrinsic localized modes (ILMs) is carried out in a typical experimental settings; that is, spatiotemporal chaos is ubiquitous and it provides a natural platform for actual realization of various ILMs through frequency control. In this type of device, a global control scheme to induce ILMs at arbitrary cantilever is proposed.;Performances of MEMS resonant devices can be seriously deteriorated when mechanical shocks interreact with devices' nonliearities. In this work, a scheme based on the idea of canceling common-mode disturbance by using symmetry is proposed to mitigate the shock effects on MEM devices. The performance degradations caused by mismatches of the device are predicted analytically.
机译:微机电(MEM)和纳米机电(NEM)谐振器代表了MEM / NEM设备的主要类别。由于它们的低阻尼特性和非线性势场的存在,这些设备本来就是非线性的。从工程学的角度来看,利用非线性行为,了解它们的动力学机制以及设计适当的控制方案以使器件在所需的非线性状态下运行至关重要。另一方面,也有必要设计方案以防止由非线性效应引起的不希望的失效模式。在这项工作中,研究了非线性MEM / NEM谐振器中固有的非线性动力学行为,控制非线性动力学的方法以及减轻机械冲击的技术。在这项工作中探索的特定应用是静电驱动的纳米线,耦合的微悬臂阵列和双钳位束谐振器。对于静电驱动的纳米线,在多物理场模型中进行了详细的分叉分析。一个发现是,纳米级系统可以表现出具有非常强的混沌特性的振动状态。阐明了这种振动状态的潜在应用。对于微型悬臂谐振器,机械非线性和电驱动力的结合会导致双稳态。在这项工作中,提出了一种基于解析理论的鲁棒控制方案,以使系统处于高能状态。对于微机电(MEM)谐振器阵列,详细分析了创建固有局部模式(ILM)的新机制。在典型的实验环境中进行;也就是说,时空混乱无处不在,它为通过频率控制实际实现各种ILM提供了自然的平台。在这种类型的设备中,提出了一种在任意悬臂处引入ILM的全局控制方案。当机械冲击与设备的非线性相互作用时,MEMS谐振设备的性能会严重下降。在这项工作中,提出了一种基于对称性消除共模干扰的方案,以减轻对MEM器件的冲击影响。通过分析可以预测由于设备不匹配而导致的性能下降。

著录项

  • 作者

    Chen, Qingfei.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号