首页> 外文学位 >The Design of a Micro-turbogenerator.
【24h】

The Design of a Micro-turbogenerator.

机译:微型涡轮发电机的设计。

获取原文
获取原文并翻译 | 示例

摘要

The basic scaling laws that govern both turbomachinery and permanent magnet generator power density are presented. It is shown for turbomachinery, that the power density scales indirectly proportional with the characteristic length of the system. For permanent magnet generators, power density is shown to be scale independent at a constant current density, but to scale favorably in actuality as a result of the scaling laws of heat dissipation.;The challenges that have affected micro-turbogenerators in the past are presented. Two of the most important challenges are the efficiency of micro-turbomachinery and the power transfer capabilities of micro-generators.;The basic operating principles of turbomachinery are developed with emphasis on the different mechanisms of energy transfer and how the ratio of these mechanisms in a turbine design relates to efficiency. Loss models are developed to quantify entropy creation from tip leakage, trailing edge mixing, and viscous boundary layers over the surface of the blades. The total entropy creation is related to lost work and turbine efficiency. An analysis is done to show turbine efficiency and power density as a function of system parameters such as stage count, RPM, reaction, and size. The practice of multi-staging is shown to not be as beneficial at small scales as it is for large scales. Single stage reaction turbines display the best efficiency and power density, but require much higher angular velocities. It is also shown that for any configuration, there exists a peak power density as a result of competing effects between the scaling laws and viscous losses at small sizes.;The operating principles of generators and power electronics are presented as are the scaling laws for both permanent magnet generators and electro-magnetic induction generators. This analysis shows that permanent magnet generators should have higher power densities at small sizes. The basic concepts of permanent magnet operation and magnetic circuits are explained, allowing the estimation of system voltage as a function of design parameters. The relationship between generator voltage, internal resistance, and load power is determined.;Models are presented for planar micro-generators to determine output voltage, internal resistance, electrical losses, and electromagnetic losses as a function of geometry and key design parameters. A 3 phase multi-layer permanent magnet generator operating at 175,000 RPM with an outer diameter of 1 cm is then designed. The device is shown to convert 10 W of input shaft power into DC electric power at an efficiency of 64%. A second device is designed using improved geometries and system parameters and operates at an efficiency of 93%.;Lastly, an ejector driven turbogenerator is designed, built, and tested. A thermodynamic cycle for the system is presented in order to estimate system efficiency as a function of design parameters. The turbo-generator was run at 27,360 RPM and demonstrated a DC power output of 7.5 mW.
机译:介绍了控制涡轮机械和永磁发电机功率密度的基本比例定律。对于涡轮机械来说,功率密度的比例与系统的特征长度成比例。对于永磁发电机,功率密度在恒定电流密度下显示为独立于比例,但由于散热的比例定律,实际上在实际情况下具有良好的比例。过去提出了影响微型涡轮发电机的挑战。微型涡轮机械的效率和微型发电机的功率传递能力是两个最重要的挑战;涡轮机械的基本运行原理是在着重于不同的能量传递机理以及这些机理如何在能量传递中的比例的基础上发展起来的涡轮设计与效率有关。开发了损耗模型,以量化由叶尖泄漏,后缘混合以及叶片表面上的粘性边界层产生的熵。总熵的产生与功的损失和涡轮效率有关。进行了分析,以显示涡轮效率和功率密度随系统参数(例如级数,RPM,反应和尺寸)的变化而变化。事实证明,多阶段的实践在小规模上并没有在大规模上那样有益。单级反应涡轮机显示出最佳的效率和功率密度,但需要更高的角速度。还显示出,对于任何配置,由于缩放定律和小尺寸的粘滞损耗之间的竞争效应,都会存在峰值功率密度。;发电机和电力电子设备的工作原理以及这两种定律都给出了永磁发电机和电磁感应发电机。该分析表明,永磁发电机在小尺寸时应具有更高的功率密度。解释了永磁运行和磁路的基本概念,从而允许根据设计参数估算系统电压。确定了发电机电压,内部电阻和负载功率之间的关系。提出了用于平面微型发电机的模型,以根据几何形状和关键设计参数确定输出电压,内部电阻,电损耗和电磁损耗。然后设计了一种三相多层永磁发电机,其外径为15,000 RPM,运行速度为175,000 RPM。显示该设备可将10 W的输入轴功率转换为直流电,效率为64%。使用改进的几何形状和系统参数设计第二个设备,并且以93%的效率运行。最后,设计,制造和测试了喷射器驱动的涡轮发电机。提出了系统的热力学循环,以便根据设计参数估算系统效率。涡轮发电机的转速为27,360 RPM,直流功率输出为7.5 mW。

著录项

  • 作者

    Camacho, Andrew Phillip.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Mechanical.;Energy.
  • 学位 M.S.
  • 年度 2011
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号