首页> 外文学位 >Study of Self-Assembly of Nanoporous Silica Particles and Biomolecules on Sensing Surfaces.
【24h】

Study of Self-Assembly of Nanoporous Silica Particles and Biomolecules on Sensing Surfaces.

机译:纳米多孔二氧化硅颗粒和生物分子在传感表面上的自组装研究。

获取原文
获取原文并翻译 | 示例

摘要

The presented research is related to a general topic of Self-Assembly in Soft Condensed Matter Physics. Specifically, the research described here deal with (a) self-assembly of complex-shaped nanoporous (called also mesoporous in chemical sciences) colloidal silica particles, fundamentals of their synthesis and the applications in nanophotonics (synthesis of ultrabright nanoporous silica particles), and (b) investigation of self-assembly of biomolecules on sensing surfaces that are used in biosensors.;Nanoporous silica particles represent an example of self-assembly of shapes that have complexity comparable to existing so far only in the biological world. Understanding of the mechanism of shape formation of such particles is important from both fundamental and applied points of view. If we want to synthesize particles with predictable and reproducible shapes, we have to understand the shape formation mechanisms. Here we describe our advances in understanding of these mechanisms. In particular, we will show that the final shaping of these particles can be described as a thermodynamical equilibrium process, which is a quite unexpected result. Synthesis of ultrabright fluorescent mesoporous silica particles exemplifies the studied mechanism of self-assembly. This application demonstrates ability to create a unique nano environment for optically active dyes; both can emerge into a translational research towards creation of fluorescent tags and labels, and a new type of sensors. This application can be of paramount importance in biomedical labeling, tracing, tagging. It can also be used in material science. A particular emphasis will be given to the synthesis of ultrabright fluorescent silica nanoparticles. The knowledge of self-assembly mechanism helps us to design nanoparticles while keeping the ultrabrightness.;In the last part of this thesis, we study the assembly of biomolecules in the sensing layer of biosensors, in particular, immunosensors. Immunosensors are a broad class of biosensors based on antigen-antibody specific affinity, which allow for highly accurate, specific, and sensitive diagnostics. However, there is a need in higher sensitivity and faster immunodetection. While the majority of immunosensors study is related to biochemistry, self-assembly of molecules on the sensing surfaces has not been virtually investigated. We demonstrate how it can be done with the help of atomic force microscopy (AFM). Our study of the sensing layers is done with the help of AFM. We developed an AFM method for characterization of the molecular density and thickness of the molecular layer assembled on the sensing surface. In particular, this allowed us to discover that the modern popular enzyme-linked immunoassay (ELISA) could be scaled down more than 4 million times without sacrificing their detection ability.;Future work will be focused on developing ultrabright nanoporous silica nanoparticles modified with amino groups for purpose of application for biology and medicine. Synthesis of microthermometers based on non-radiative energy transfer (FRET) between two fluorescent dye molecules will be attempted too.
机译:提出的研究与软凝聚态物理中的自组装有关。具体而言,此处描述的研究涉及(a)复杂形状的纳米多孔(在化学科学中也称为中孔)胶体二氧化硅颗粒的自组装,其合成基础以及在纳米光子学中的应用(超亮纳米多孔二氧化硅颗粒的合成),以及(b)研究在生物传感器中使用的传感表面上生物分子的自组装。纳米多孔二氧化硅颗粒代表了形状自组装的一个例子,其形状具有迄今为止仅在生物界可比拟的复杂性。从基本和应用的观点来看,了解这种颗粒的形状形成的机理都是重要的。如果要合成具有可预测和可复制形状的粒子,则必须了解形状形成机理。在这里,我们描述了我们对这些机制的理解的进步。特别地,我们将显示这些粒子的最终成形可以描述为热力学平衡过程,这是一个非常意外的结果。超亮荧光介孔二氧化硅颗粒的合成例证了自组装的机理。该应用展示了为光学活性染料创造独特的纳米环境的能力。两者都可以转化为荧光标记和标签以及新型传感器的转化研究。在生物医学标记,追踪,标记中,该应用至关重要。它也可以用于材料科学。将特别强调超亮荧光二氧化硅纳米颗粒的合成。自组装机制的知识有助于我们在保持超高亮度的同时设计纳米粒子。在本文的最后一部分,我们研究了生物分子在生物传感器尤其是免疫传感器的传感层中的组装。免疫传感器是一类广泛的基于抗原-抗体特异性亲和力的生物传感器,可进行高度准确,特异性和灵敏的诊断。然而,需要更高的灵敏度和更快的免疫检测。尽管大多数免疫传感器研究与生物化学有关,但尚未对虚拟分子在传感表面上的自组装进行过虚拟研究。我们演示了如何借助原子力显微镜(AFM)来完成。我们在AFM的帮助下完成了对传感层的研究。我们开发了一种AFM方法来表征组装在传感表面上的分子层的分子密度和厚度。特别是,这使我们发现现代流行的酶联免疫测定(ELISA)可以缩小400万倍以上而又不牺牲其检测能力。;未来的工作将集中在开发经氨基修饰的超亮纳米多孔二氧化硅纳米粒子上用于生物学和医学目的。还将尝试基于两个荧光染料分子之间的非辐射能量转移(FRET)合成微型温度计。

著录项

  • 作者

    Volkov, Dmytro.;

  • 作者单位

    Clarkson University.;

  • 授予单位 Clarkson University.;
  • 学科 Nanoscience.;Nanotechnology.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号