首页> 外文学位 >Study of polystyrene-poly(ethylene oxide) diblock copolymer monolayers as barriers to protein adsorption.
【24h】

Study of polystyrene-poly(ethylene oxide) diblock copolymer monolayers as barriers to protein adsorption.

机译:聚苯乙烯-聚环氧乙烷双嵌段共聚物单层作为蛋白质吸附障碍的研究。

获取原文
获取原文并翻译 | 示例

摘要

Protein adsorption resistant surfaces find use in many biomedical applications, such as catheters, dialysis devices and biosensors that involve blood contacting surfaces. To ensure long-term functioning of a device in an environment containing protein, there is a need to produce homogeneous surfaces that are resistant to protein adsorption. A polymer brush covered surface, produced by either physical adsorption or chemical grafting of hydrophilic polymers to surfaces, is one of the approaches used in creating such surfaces. High grafting densities needed to make an effective barrier are usually not realized in chemical grafting/adsorption from solution, due to self-exclusion of surface grafted molecules. In this dissertation polymer brush surfaces formed by chemically grafted PEO molecules and transferred monolayers of PS-b-PEO diblock copolymers are investigated using atomic force microscopy (AFM), surface plasmon resonance (SPR) and surface pressure measurement techniques. An AFM adhesion mapping technique was used to evaluate the surface heterogeneity of chemically modified PEO and transferred diblock copolymer monolayer surfaces. The behavior of PS-b-PEO molecules at the air-water interface was studied using Langmuir trough. The stability of transferred diblock copolymer monolayers was investigated using AFM. Using SPR, protein adsorption to the diblock copolymer layers was investigated as a function of protein size (using HSA and ferritin) as a function of grafting density of PEO in the monolayer. It was seen that a lower density of the PS-b-PEO monolayer was sufficient to prevent ferritin adsorption (larger protein) while a higher density brush layer was required to achieve complete prevention of HSA adsorption to the surface. The effect of mobility of the polymer brush layer on protein adsorption prevention was analyzed using SPR and surface pressure measurements. It was seen that the copolymer monolayer (at the air-buffer interface) rearranged itself to allow protein to penetrate and adsorb to the air-water interface while a PS-b-PEO monolayer immobilized at the SPR sensing surface at same surface density prevented protein from penetrating the brush layer. The conclusions drawn indicate the interplay between size and density of the polymer brush and the size of the protein and the relation between the mobility of the brush layer and protein adsorption.
机译:耐蛋白质吸附的表面可用于许多生物医学应用中,例如涉及血液接触表面的导管,透析设备和生物传感器。为了确保装置在包含蛋白质的环境中的长期功能,需要产生抗蛋白质吸附的均匀表面。通过将亲水性聚合物物理吸附或化学接枝到表面而制成的覆盖聚合物刷的表面是用于创建此类表面的方法之一。由于表面接枝分子的自排他性,通常不能在溶液的化学接枝/吸附中实现有效屏障所需的高接枝密度。本文采用原子力显微镜(AFM),表面等离振子共振(SPR)和表面压力测量技术研究了由化学接枝的PEO分子和PS-b-PEO二嵌段共聚物的转移单层形成的聚合物刷表面。 AFM粘附映射技术用于评估化学改性的PEO和转移的二嵌段共聚物单层表面的表面异质性。使用朗缪尔槽研究了PS-b-PEO分子在空气-水界面的行为。使用AFM研究了转移的二嵌段共聚物单层的稳定性。使用SPR,研究了蛋白质吸附到二嵌段共聚物层上的作用,该作用是蛋白质大小的函数(使用HSA和铁蛋白),是单层中PEO的接枝密度的函数。可以看出,较低密度的PS-b-PEO单层足以防止铁蛋白吸附(较大的蛋白质),而需要较高密度的刷层才能完全防止HSA吸附至表面。使用SPR和表面压力测量分析了聚合物刷层的迁移率对防止蛋白质吸附的影响。可以看出,共聚物单分子层(在空气-缓冲界面处)重新排列以允许蛋白质渗透并吸附到空气-水界面,而以相同的表面密度固定在SPR传感表面上的PS-b-PEO单分子层阻止了蛋白质不会穿透笔刷层。得出的结论表明聚合物刷的尺寸和密度与蛋白质的尺寸之间的相互作用,以及刷层的迁移率与蛋白质吸附之间的关系。

著录项

  • 作者

    Jogikalmath, Gangadhar.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Materials science.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号