首页> 外文学位 >Enhancing the intracortical neural interface with poly(3,4-ethylenedioxythiophene) (PEDOT).
【24h】

Enhancing the intracortical neural interface with poly(3,4-ethylenedioxythiophene) (PEDOT).

机译:用聚(3,4-乙撑二氧噻吩)(PEDOT)增强皮质内神经界面。

获取原文
获取原文并翻译 | 示例

摘要

Intracortical neuroprostheses offer the prospect of bi-directional communication interfaces for treatment and scientific understanding of physical and mental neurological disorders; however, their long-term functionality is limited by our inability to compensate for the dynamics of the neural interface. The neural interface refers to the electrode-tissue interface formed by placing an electrode into neural tissue. The brain's reactive tissue response electrically and mechanically isolates the device from healthy tissue, reducing recording quality as well as stimulation performance. Additionally, current intracortical microstimulation materials are either unable to safely deliver charge, or materials degrade during applied electrical stimulation.;The objectives of the presented research were to enhance the long-term reliability of the intracortical neural interface by 1) improving the reliability and performance of micro-neural interface materials for electrical stimulation, and 2) forming an integrated neural interface after device implantation beyond the region of tissue affected by the reactive tissue response. Here we report the achievement of these objectives through the use of the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). The techniques presented here offer unique neural interfacing approaches to improve the long term functionality of intracortical neuroprostheses.;In the first study, we evaluated the in vitro stability and in vivo performance of PEDOT coatings for microstimulation. Microelectrodes coated with PEDOT exhibited electrochemical properties superior to iridium oxide and remained stable after short-term repetitive pulsing at current densities damaging to iridium oxide. Further, chronically implanted PEDOT coated microelectrodes subjected to daily microstimulation displayed a more reliable, low-impedance interface which corresponded to safer, lower-amplitude voltage excursions. However, both electrode materials were equally effective in regards to behavioral thresholds suggesting similar amounts of tissue damage likely occurred with all implanted devices.;In the second study, we evaluated in vivo PEDOT polymerization as a technique to grow the neural interface after implantation to interface with healthy tissue beyond the region influenced by the reactive tissue response and potentially improve the safety of stimulation levels. In vivo PEDOT polymerization in the rat cerebral cortex resulted in lower impedance and improved recording quality. Histological analysis by optical microscopy confirmed successful integration of a dense PEDOT network within the tissue extending approximately 100-200 microm adjacent to the electrode.
机译:皮层内神经假体为治疗和科学地了解身心神经疾病提供了双向通信接口的前景;但是,它们的长期功能受到我们无法补偿神经接口动力学的限制。神经界面是指通过将电极放入神经组织而形成的电极-组织界面。大脑的反应性组织反应将设备与健康组织电气或机械隔离,从而降低了记录质量以及刺激性能。另外,当前的皮质内微刺激材料或者不能安全地输送电荷,或者在施加电刺激过程中材料降解。提出的研究的目的是通过以下方法来增强皮质内神经接口的长期可靠性:1)改善可靠性和性能用于电刺激的微神经界面材料; 2)装置植入后,在受反应性组织反应影响的组织区域之外形成整合的神经界面。在这里,我们通过使用导电聚合物聚(3,4-乙撑二氧噻吩)(PEDOT)报告了这些目标的实现。本文介绍的技术提供了独特的神经接口方法,以改善皮质内神经假体的长期功能。在第一个研究中,我们评估了微刺激PEDOT涂层的体外稳定性和体内性能。涂有PEDOT的微电极表现出优于氧化铱的电化学性能,并且在短期重复脉冲后,在电流密度损坏氧化铱后仍保持稳定。此外,接受日常微刺激的长期植入的PEDOT涂层微电极表现出更可靠的低阻抗界面,这对应于更安全,幅度更低的电压偏移。然而,两种电极材料在行为阈值方面均有效,表明所有植入设备都可能发生相似量的组织损伤。在第二项研究中,我们评估了体内PEDOT聚合作为一种在植入至界面后生长神经界面的技术不受反应性组织反应影响的区域以外的健康组织,并有可能提高刺激水平的安全性。大鼠大脑皮层的体内PEDOT聚合可降低阻抗并改善记录质量。通过光学显微镜的组织学分析证实了密集的PEDOT网络在与电极相邻延伸约100-200微米的组织内的成功整合。

著录项

  • 作者

    Wilks, Seth J.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Biology Neuroscience.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号