首页> 外文学位 >The redox reaction of anhydrous hydrogen bromide for hydrogen production and bromine hydrogen flow battery.
【24h】

The redox reaction of anhydrous hydrogen bromide for hydrogen production and bromine hydrogen flow battery.

机译:无水溴化氢用于制氢和溴化氢液流电池的氧化还原反应。

获取原文
获取原文并翻译 | 示例

摘要

Recently, flow batteries are considered to be suitable for the large scale energy storage and different prototypes (vanadium, sodium polysulfide bromide, zinc-bromide, zinc-nickel, and lead acid etc) have been developed. These devices essentially store energy in the electrolyte externally and utilize redox electrode reactions for energy conversion. Therefore, highly reversible electrode reactions with good mass transfer are desired for improving its power density and efficiency. H2/H+ and Br 2/Br-redox couples are known to own good reversibility, while discharge of Br2/Br- electrode are limited by mass transfer in liquid phase, a gas-phase Br2 H2 flow battery is investigated in this work. Equivalently important, in this flow battery, co-production of bromine and hydrogen, two important fundamental chemicals in the hydrogen economy and energy industry, is realized in the charge process.;This vapor-phase Br2 H2 flow battery is constructed and tested with respect to open circuit potential (OCV) and V-I polarization in both charge and discharge modes as function of bromine content. Operation of this flow battery is then analyzed via a mathematical model. A key feature of this model is water transport across the membrane, which determines membrane conductivity, reactant concentration and undesired condensation. The model predicts the operating conditions of the cell in both fuel-cell (i.e., charge) and electrolysis (i.e., discharge) mode as a function of inlet gas composition and pressure differential across the membrane. The analysis reveals that gas-phase Br2/HBr reactants significantly enhance mass transfer, which enables higher currents densities to be achieved compared to a liquid-fed system. The model is used to provide insight into cell operation, and predict conditions and battery performance where water condensation is avoided. To lower down the cost and improve the stability of the electrode materials, non Pt materials are developed. RuO2, carbon (Vulcan XC 72 R) and TiO2-Nb (10% wt.) are investigated for HBr electrochemical oxidation. IrO2/C and MoS2 are synthesized and characterized for hydrogen evolution reaction. They are prepared into membrane electrode assembly (MEAs) and evaluated in the HBr electrolyzer (charge mode).
机译:近来,认为液流电池适合于大规模的能量存储,并且已经开发出不同的原型(钒,多硫化钠溴,溴化锌,锌镍和铅酸等)。这些装置基本上在外部将能量存储在电解质中,并利用氧化还原电极反应进行能量转换。因此,为了改善其功率密度和效率,需要具有良好传质的高度可逆的电极反应。已知H2 / H +和Br 2 / Br-氧化还原对具有良好的可逆性,而Br2 / Br-电极的放电受液相中的质量转移限制,因此在此研究了气相Br2 H2液流电池。同样重要的是,在该液流电池中,在充电过程中实现了氢和经济工业中两种重要基础化学物质溴和氢的联产。在充电和放电模式下开路电位(OCV)和VI极化随溴含量的变化而变化。然后通过数学模型分析液流电池的运行情况。该模型的关键特征是水在整个膜上的传输,这决定了膜的电导率,反应物浓度和不希望的冷凝。该模型预测燃料电池(即,充电)和电解(即,放电)模式下电池的工作条件,其作为进气成分和跨膜压差的函数。分析表明,气相Br2 / HBr反应物显着增强了传质,与液流系统相比,能够实现更高的电流密度。该模型用于深入了解电池运行情况,并预测避免水凝结的条件和电池性能。为了降低成本并提高电极材料的稳定性,开发了非Pt材料。研究了RuO2,碳(Vulcan XC 72 R)和TiO2-Nb(10%wt。)用于HBr电化学氧化。合成了IrO2 / C和MoS2并进行了析氢反应的表征。它们被制备成膜电极组件(MEA),并在HBr电解槽中进行评估(充电模式)。

著录项

  • 作者

    Zhang, Rui.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Chemical engineering.;Energy.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号