首页> 外文学位 >The development of a microchip-based capillary electrophoresis device with sinusoidal voltammetric detection for the analysis of biomolecules.
【24h】

The development of a microchip-based capillary electrophoresis device with sinusoidal voltammetric detection for the analysis of biomolecules.

机译:基于正弦伏安检测的基于微芯片的毛细管电泳装置的开发,用于生物分子的分析。

获取原文
获取原文并翻译 | 示例

摘要

The field of microfluidics promises to improve the throughput of biological analyses while reducing cost through the use of short, micron-sized channels that require small volumes for operation. Fields such as neurochemistry, genomics, and environmental science will benefit from the development and implementation of microfluidic devices that perform rapid, inexpensive, and accurate analyses of complex biomolecule systems.; Described in this work is the development of a microfluidic chip, which integrates capillary electrophoresis (CE) and electrochemical detection, for use in a variety of biological applications. The favorable characteristics of electrochemical detection, such as its ease of miniaturization, simplicity, and low cost, make it an attractive detection strategy for use with miniaturized devices. Various electrode materials were investigated in the optimization of this microchip device, which consists of two reversibly sealed materials: a quartz bottom plate containing the working electrode and a poly (dimethylsiloxane) (PDMS) substrate containing molded micron-sized electrophoresis channels. Additionally, parameters such as electrode size and geometry, as well as channel dimensions, were explored.; The electrochemical detection technique that was employed, termed sinusoidal voltammetry (SV), capitalizes on performing data analysis in the frequency domain to improve the sensitivity and selectivity of the measurement. This impressive selectivity is demonstrated in the discrimination between a pair of carbohydrates, detected at a copper electrode, which were not chromatographically resolved. The enhanced sensitivity of SV was illustrated in a direct comparison to DC amperometric detection by evaluation of detection limits for the analysis of various neurotransmitters at gold electrodes.; The majority of the work involves the use of pyrolyzed photoresist films (PPFs), which can be photolithographically patterned onto planar surfaces and have been shown to exhibit electrochemical properties very similar to glassy carbon. The applicability and performance of PPF electrodes for use in microchip CE-SV devices is shown to exceed that of gold electrodes in the detection of various neurotransmitters. Additionally, a novel assay for the analysis of single nucleotide polymorphisms (SNPs) has been developed, which is envisioned as a key component for point-of-care diagnostic applications.
机译:微流体领域有望通过使用短而微米大小的通道(需要小体积操作)来提高生物分析的通量,同时降低成本。神经化学,基因组学和环境科学等领域将从微流体设备的开发和实施中受益,这些设备可以对复杂的生物分子系统进行快速,廉价且准确的分析。这项工作描述了微流控芯片的开发,该芯片集毛细管电泳(CE)和电化学检测于一体,可用于多种生物学应用。电化学检测的有利特性,如易于小型化,简单和低成本等,使其成为与小型设备一起使用的有吸引力的检测策略。在优化此微芯片设备的过程中,对各种电极材料进行了研究,该器件由两种可逆密封的材料组成:包含工作电极的石英底板和包含模制微米级电泳通道的聚(二甲基硅氧烷)(PDMS)基板。另外,探索了诸如电极尺寸和几何形状以及通道尺寸的参数。所采用的电化学检测技术称为正弦伏安法(SV),它利用频域中的数据分析来提高测量的灵敏度和选择性。在铜电极上检测到的未色谱分离的一对碳水化合物之间的区别证明了这种令人印象深刻的选择性。通过评估金电极上各种神经递质的检测极限值的评估,可以直接将SV的灵敏度与DC安培检测进行比较。大部分工作涉及热解光致抗蚀剂膜(PPF)的使用,该光致抗蚀剂膜可以在平面表面上进行光刻图案化,并且已显示出与玻璃碳非常相似的电化学性能。在各种神经递质的检测中,用于微芯片CE-SV设备的PPF电极的适用性和性能已超过金电极。此外,已经开发了一种用于分析单核苷酸多态性(SNP)的新颖测定法,该测定法被认为是即时诊断的关键组件。

著录项

  • 作者

    Hebert, Nicole Eleanor.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号