首页> 外文学位 >Understanding the Earth's ionosphere as a fully sufficient source for magnetospheric plasma.
【24h】

Understanding the Earth's ionosphere as a fully sufficient source for magnetospheric plasma.

机译:将地球的电离层理解为磁层等离子体的充分来源。

获取原文
获取原文并翻译 | 示例

摘要

One of the most significant questions remaining in space physics concerns the ultimate fate of ionospheric plasma outflows and their relative contribution to the plasma populations within the magnetosphere. A growing number of ionospheric outflow studies over the past two decades have cast serious doubt on the traditional view of solar wind as a dominant source of magnetospheric plasma. A unique approach combining data and modeling have been used here to demonstrate that the earth's ionosphere is fully capable of providing the magnetosphere with plasma at energies and densities that are consistent with observations.; The first detailed statistical analysis of pitch angle and energy distributions of polar wind (3.5 eV) outflows has been performed using data from the Thermal Ion Dynamics Experiment (TIDE) on board the Polar spacecraft. A new method of accounting for spacecraft charging effects has been used, providing improved estimates of the true polar wind outflow characteristics.; The results of this polar wind analysis are used together with known cleft ion fountain (CIF) and auroral source characteristics as input to a single particle trajectory code that traces ion motion throughout magnetospheric electric and magnetic fields. The results of numerous model trajectories suggest that ion drifts through magnetospheric electric fields are capable of accelerating terrestrial ions out to the distant magnetotail where they are further accelerated to plasma sheet and ring current energies. Ion flow characteristics, energies, and densities as calculated from the model agree closely with observations. Polar wind from the dayside ionosphere appears to be the dominant source for magnetospheric H+ ions, while auroral ions play a surprisingly minor role in plasma sheet refilling and ring current formation. Cold populations (50 eV) of ionospheric material appear to exist throughout much of the outer magnetosphere that would be difficult to detect with current orbiting particle instruments. Renewed efforts are needed throughout the space physics community to address the implications of the ionosphere the dominant source of plasma for the magnetosphere.
机译:在空间物理学中仍然存在的最重要的问题之一是电离层等离子体流出的最终命运及其对磁层内等离子体种群的相对贡献。在过去的二十年中,越来越多的电离层流出研究对传统的将太阳风视为磁层等离子体的主要来源的观点提出了严重质疑。这里使用了一种结合数据和建模的独特方法来证明地球电离层完全能够以与观测一致的能量和密度向磁层提供等离子体。使用极地飞船上热离子动力学实验(TIDE)的数据对极风(<3.5 eV)流出的桨距角和能量分布进行了首次详细的统计分析。已经使用了一种计算航天器带电效应的新方法,从而提供了对真实极风流出特征的改进估计。极风分析的结果与已知的裂隙离子源(CIF)和极光源特征一起用作单个粒子轨迹代码的输入,该轨迹跟踪整个磁层电场和磁场中的离子运动。大量模型轨迹的结果表明,穿过磁层电场的离子漂移能够将地球离子加速到遥远的磁尾,在那里它们被进一步加速成等离子体薄层和环流能量。根据模型计算得出的离子流特征,能量和密度与观察值非常吻合。来自日间电离层的极风似乎是磁层H + 离子的主要来源,而极光离子在等离子薄片的充填和环流形成中起着令人惊讶的次要作用。电离层材料的冷群体(<50 eV)似乎存在于整个外磁层的大部分区域,而使用当前运行的粒子仪器很难检测到。整个空间物理学界都需要作出新的努力,以解决电离层的影响,电离层是磁层的主要等离子体源。

著录项

  • 作者

    Huddleston, Matthew Mark.;

  • 作者单位

    Vanderbilt University.;

  • 授予单位 Vanderbilt University.;
  • 学科 Physics Astronomy and Astrophysics.; Physics Atmospheric Science.; Geophysics.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 天文学;大气科学(气象学);地球物理学;
  • 关键词

  • 入库时间 2022-08-17 11:45:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号