首页> 外文学位 >A thermodynamic damage mechanics theory and experimental verification for thermomechanical fatigue life prediction of microelectronics solder joints.
【24h】

A thermodynamic damage mechanics theory and experimental verification for thermomechanical fatigue life prediction of microelectronics solder joints.

机译:微电子焊点热力学疲劳寿命预测的热力学损伤力学理论和实验验证。

获取原文
获取原文并翻译 | 示例

摘要

A damage coupled thermo-viscoplastic constitutive model has been developed to predict thermomechanical fatigue life of eutectic Pb/Sn solder joints in microelectronics packaging. The damage, as an internal state variable with evolution function, corresponds to microstructure degradation. The damage coupled constitutive model reflects the interaction between damage and mechanical response of material under fatigue loading. The entropy, which is a measure of the disorder of thermodynamic system, is used as the metric of material damage.; The time and temperature dependent material parameters of eutectic Pb/Sn solder alloys involved in the constitutive model have been experimentally determined. And the damage coupled constitutive model has been programmed as user-defined subroutines and implemented into nonlinear finite element procedure of ABAQUS for numerical simulation.; Thermal and isothermal validation testing have been performed using test vehicle and actual microelectronics packaging module. The numerical model and simulation procedure have been verified by monotonic uniaxial tensile testing and monotonic shear testing under different temperatures and strain rates, isothermal cyclic shear testing, and thermal cycling of actual BGA microelectronics packages.
机译:已经开发了一种损伤耦合的热粘塑性本构模型来预测微电子封装中共晶Pb / Sn焊点的热机械疲劳寿命。作为具有演化功能的内部状态变量,破坏对应于微观结构的退化。损伤耦合本构模型反映了疲劳载荷下材料的损伤与机械响应之间的相互作用。熵是衡量热力学系统紊乱的一种量度,被用作物质破坏的量度。通过实验确定了本构模型中涉及的共晶Pb / Sn焊料合金的时间和温度相关材料参数。损伤耦合本构模型已被编程为用户定义的子程序,并被实现为ABAQUS的非线性有限元程序,以进行数值模拟。已经使用测试工具和实际的微电子封装模块执行了热和等温验证测试。通过在不同温度和应变速率下的单调单轴拉伸测试和单调剪切测试,等温循环剪切测试以及实际的BGA微电子封装的热循环,验证了数值模型和仿真程序。

著录项

  • 作者

    Tang, Hong.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Applied Mechanics.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 289 p.
  • 总页数 289
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号