首页> 外文学位 >New hardware algorithms and designs for Montgomery modular inverse computation in Galois fields GF(p) and GF(2n).
【24h】

New hardware algorithms and designs for Montgomery modular inverse computation in Galois fields GF(p) and GF(2n).

机译:Galois场GF(p)和GF(2n)中蒙哥马利模块化逆计算的新硬件算法和设计。

获取原文
获取原文并翻译 | 示例

摘要

The computation of the inverse of a number in finite fields, namely Galois Fields GF(p) or GF(2n), is one of the most complex arithmetic operations in cryptographic applications. In this work, we investigate the GF(p) inversion and present several phases in the design of efficient hardware implementations to compute the Montgomery modular inverse. We suggest a new correction phase for a previously proposed almost Montgomery inverse algorithm to calculate the inversion in hardware. It is also presented how to obtain a fast hardware algorithm to compute the inverse by multi-bit shifting method. The proposed designs have the hardware scalability feature, which means that the design can fit on constrained areas and still handle operands of any size. In order to have long-precision calculations, the module works on small precision words. The word-size, on which the module operates, can be selected based on the area and performance requirements. The upper limit on the operand precision is dictated only by the available memory to store the operands and internal results. The scalable module is in principle capable of performing infinite-precision Montgomery inverse computation of an integer, modulo a prime number.; We also propose a scalable and unified architecture for a Montgomery inverse hardware that operates in both GF(p) and GF(2n) fields. We adjust and modify a GF(2n) Montgomery inverse algorithm to benefit from multi-bit shifting hardware features making it very similar to the proposed best design of GF(p) inversion hardware.; We compare all scalable designs with fully parallel ones based on the same basic inversion algorithm. All scalable designs consumed less area and in general showed better performance than the fully parallel ones, which makes the scalable design a very efficient solution for computing the long precision Montgomery inverse.
机译:有限域中的数字逆的计算,即伽罗瓦域GF(p)或GF(2 n ),是密码学应用中最复杂的算术运算之一。在这项工作中,我们研究了GF(p)反演,并提出了有效的硬件实现设计中的几个阶段,以计算蒙哥马利模块化反演。我们建议为先前提出的几乎是蒙哥马利逆算法提供一个新的校正阶段,以计算硬件中的逆。还提出了如何获得一种快速的硬件算法,通过多比特移位方法来计算逆。拟议的设计具有硬件可伸缩性功能,这意味着该设计可以适合受约束的区域,并且仍然可以处理任何大小的操作数。为了进行长精度计算,该模块使用较小的精度字。可以根据面积和性能要求来选择模块所使用的字长。操作数精度的上限仅由可用于存储操作数和内部结果的内存决定。可扩展模块原则上能够对整数进行无限精度的蒙哥马利逆计算,以质数为模。我们还为可​​在GF(p)和GF(2 n )领域中运行的蒙哥马利逆硬件提出了一种可扩展且统一的体系结构。我们调整并修改了GF(2 n )Montgomery逆算法,以利用多位移位硬件功能,使其与建议的GF(p)逆硬件的最佳设计非常相似。我们将所有可伸缩设计与基于相同基本反演算法的完全并行设计进行比较。所有可扩展的设计占用的面积都较小,并且总体上比完全并行的设计具有更好的性能,这使可扩展的设计成为用于计算长精度蒙哥马利逆的非常有效的解决方案。

著录项

  • 作者

    Gutub, Adnan Abdul-Aziz.;

  • 作者单位

    Oregon State University.;

  • 授予单位 Oregon State University.;
  • 学科 Computer Science.; Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.3787
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号