首页> 外文学位 >Investigation and characterization of aluminum gallium nitride/gallium nitride device structures and the effects of material defects and processing on device performance.
【24h】

Investigation and characterization of aluminum gallium nitride/gallium nitride device structures and the effects of material defects and processing on device performance.

机译:氮化铝镓/氮化镓器件结构的研究和表征,以及材料缺陷和工艺对器件性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

The III-Nitride material system has proven extremely valuable for semiconductor device applications. The ability to grow high quality AlGaN/GaN that can be used for RF device applications is largely due to the commercial success of the implementation of p-type doping in GaN for optical devices. Even high quality GaN has relatively large defect densities. GaN devices are still able to achieve impressive performance, but not consistently. The variation in material quality, including deep-level defects and nonuniformities introduced by processing and growth, have deleterious effects on microwave device performance. These variations and the inability to control them reduce yield and reliability thus making AlGaN/GaN devices difficult to produce commercially. The purpose of this work is to characterize and contribute to the understanding of defects in AlGaN/GaN device systems and their effects on microwave device performance both DC and RF. The effects of device fabrication and surface processing on these defects have also been characterized.; Low Energy Electron-Excited Nano-luminescence (LEEN) Spectroscopy has been used to characterize radiative defects in the AlGaN/GaN material system on a microscopic scale and compare them with electrical measurements on HEMT's and TLM structures. Salient features commonly observed in the LEEN spectra include donor-bound excitons in GaN at ∼3.43 eV, donor-acceptor pair transitions (DAP) at ∼3.30 eV, yellow luminescence (YL) centered at ∼2.20 eV, AlGaN donor-bound exciton emission, and associated phonon replicas. These measurements have been used to successfully correlate contact and sheet resistance with DAP, YL, and AlGaN near-band edge emission spectral features within a given wafer and between wafers. The effects of ultrahigh vacuum processing with Argon sputtering and rapid thermal annealing on defects observed with LEEN spectra have been documented. Microscopic LEEN analysis has also been performed on working microwave devices and correlated to electrical measurements of frequency response, gain, and gate capacitance. Spectroscopic studies of working and failed microwave devices show that the surface and device processing changes have significant effects on device performance. These results show that it is possible to characterize and predict device performance in terms of deep level defects with non-destructive luminescence techniques on a very localized scale.
机译:事实证明,III族氮化物材料系统对于半导体器件应用极为重要。生长可用于RF器件应用的高质量AlGaN / GaN的能力在很大程度上归功于在光学器件GaN中实施p型掺杂的商业成功。即使是高质量的GaN也具有相对较大的缺陷密度。 GaN器件仍然能够实现令人印象深刻的性能,但并非始终如一。材料质量的变化,包括深层缺陷和加工和生长带来的不均匀性,会对微波设备的性能产生有害影响。这些变化以及无法对其进行控制会降低成品率和可靠性,从而使AlGaN / GaN器件难以商业化生产。这项工作的目的是表征和有助于理解AlGaN / GaN器件系统中的缺陷及其对微波器件的DC和RF性能的影响。还已经表征了器件制造和表面处理对这些缺陷的影响。低能电子激发纳米发光(LEEN)光谱已用于微观表征AlGaN / GaN材料系统中的辐射缺陷,并将其与HEMT和TLM结构的电学测量结果进行比较。在LEEN光谱中通常观察到的显着特征包括GaN中约3.43 eV的施主结合激子,约3.30 eV的施主-受主对跃迁(DAP),中心在约2.20 eV的黄色发光(YL),AlGaN施主结合的激子发射以及相关的声子副本。这些测量已用于成功地将接触电阻和薄层电阻与给定晶圆内以及晶圆之间的DAP,YL和AlGaN近带边缘发射光谱特征相关联。已经记录了使用氩溅射进行的超高真空处理和快速热退火对用LEEN光谱观察到的缺陷的影响。显微LEEN分析也已经在工作的微波设备上进行,并且与频率响应,增益和栅极电容的电测量相关。对工作中的和失效的微波设备进行的光谱研究表明,表面和设备处理过程的变化对设备性能有重大影响。这些结果表明,可以在非常局部的范围内使用无损发光技术来表征和预测深层缺陷方面的器件性能。

著录项

  • 作者

    Jessen, Gregg Huascar.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号