首页> 外文学位 >Molecular scale modeling of biomass pyrolysis - transport and microstructural changes.
【24h】

Molecular scale modeling of biomass pyrolysis - transport and microstructural changes.

机译:生物质热解的分子尺度建模-传输和微观结构变化。

获取原文
获取原文并翻译 | 示例

摘要

Pyrolysis of lignocellulosic biomass could become a significant source of renewable chemicals and fuels in the near future. In addition to bio-oil production, fast pyrolysis of biomass produces significant quantities of synthesis gases and char. Decades of classical research on pyrolysis of lignocellulosic biomass has not yet produced a generalized formalism for design and prediction of reactor performance. Plagued by the limitations of experimental techniques such as thermogravimetric analysis (TGA) and extremely fast heating rates and low residence times to achieve high conversion to useful liquid products, researchers are now turning to molecular modeling to gain insights. While there is considerable on-going molecular-scale modeling in the area of lignocellulosic biomass, the majority focuses on discovering specific conversion pathways.;This work, however, endeavors to utilize molecular-scale modeling to enable the development of meso- to micro-scale simulations that connect with relevant micro-structural and kinetic aspects of biomass pyrolysis. Biovia Material Studio 5.5 and 7.0 were used to perform molecular dynamics simulations using the molecular mechanics force field, PCFF. In this study, diffusion coefficients for CO2 in crystalline and amorphous cellulose were estimated at different temperatures. Morphological changes in cellulose and whole biomass were also studied in an effort to discern relevant mechanisms associated with microstructural changes caused by thermal depolymerization. The results from this study illustrates how a new era of molecular-scale modeling-driven inquiry is beginning to shape the diverse research landscape and influence the description of how cellulose and associated hemicellulose and lignin depolymerize to form the many hundreds of potential products of pyrolysis.
机译:在不久的将来,木质纤维素生物质的热解可能成为可再生化学品和燃料的重要来源。除了生产生物油之外,生物质的快速热解还会产生大量的合成气和焦炭。木质纤维素生物质热解的数十个经典研究尚未产生用于设计和预测反应器性能的一般形式。由于诸如热重分析(TGA)之类的实验技术的局限性,极高的加热速率和低的停留时间以实现向有用液体产品的高转化率,困扰着研究人员,研究人员现在转向分子建模以获取见识。尽管木质纤维素生物质领域正在进行大量的分子尺度建模,但大多数都集中在发现特定的转化途径上;然而,这项工作致力于利用分子尺度建模来实现中微到微尺度的发展。与生物质热解的相关微观结构和动力学方面相关的大规模模拟。 Biovia Material Studio 5.5和7.0用于使用分子力学力场PCFF进行分子动力学模拟。在这项研究中,估算了在不同温度下结晶纤维素和无定形纤维素中CO2的扩散系数。还研究了纤维素和整个生物质的形态变化,以发现与热解聚引起的微观结构变化相关的机理。这项研究的结果说明了一个新的时代,即由分子尺度建模驱动的询问正在如何开始塑造多样化的研究格局,并影响对纤维素以及相关的半纤维素和木质素如何解聚以形成数百种潜在热解产物的描述。

著录项

  • 作者

    Mohammad, Abdul Salam.;

  • 作者单位

    Tennessee Technological University.;

  • 授予单位 Tennessee Technological University.;
  • 学科 Chemical engineering.
  • 学位 M.S.
  • 年度 2016
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地下建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号