首页> 外文学位 >Resonant wave-ion interactions in the heliosphere: I. Interplanetary traveling shocks. II. Ion heating and acceleration in the extended corona.
【24h】

Resonant wave-ion interactions in the heliosphere: I. Interplanetary traveling shocks. II. Ion heating and acceleration in the extended corona.

机译:日球中的共振波离子相互作用:I.行星际行进冲击。二。延长电晕中的离子加热和加速。

获取原文
获取原文并翻译 | 示例

摘要

In Part I we present a revised version of the self-consistent theory of ion diffusive shock acceleration and associated generation of hydromagnetic waves at a planar stationary shock. Coupled wave kinetic and energetic particle transport equations are solved numerically and compared with an analytical approximation similar to that derived by Lee [1982, 1983]. The analytical approximation provides an accurate representation of both the proton distribution and the wave intensity. Excellent agreement between the predicted wave magnetic power spectral density adjacent to the shock as a function of frequency and the wave spectrum measured by ISEE 3 at the November 11–12, 1978, interplanetary traveling shock is achieved. A comparison is also made between the predicted total wave energy density and that observed upstream of Earth's bow shock by the AMPTE/IRM satellite for a statistical study of approximately 400 near-to-nose events from late 1984 and 1985. The correlation between the observed wave power and the prediction is very good with a correlation coefficient of 0.92. However, the average observed wave magnetic energy density is approximately 63% of that predicted, suggesting possible wave dissipation, which is not included in the theory.; In Part II we present a semi-analytical solution of the gyrophase-averaged ion transport equation for ion distribution functions in the extended corona. We adopt the essential features of the kinetic shell model [Isenberg , 1997; 2001a, b, c; Isenberg et al., 2000, 2001] and thus, we describe the ion distribution as comprised of cyclotron-resonant and nonresonant parts. We include gravity, the ambipolar electric field, adiabatic deceleration, and magnetic mirroring, but keep the solar wind and wave phase speeds constant. The cold, electron-proton plasma dispersion relation is used to determine the wave-ion resonance condition. The actual, analytical forms of the ion distribution functions obtained are clearly not Maxwellian or bi-Maxwellian. Our solutions describe some of the non-thermal phenomena frequently observed in the extended corona: anisotropic temperature distributions, and differential streaming between protons and minor ion species. However, we fail to model the observed radial temperature dependence of protons and O5+ ions.
机译:在第一部分中,我们介绍了离子扩散冲击加速度的自洽理论的修正版本,以及在平面静止冲击时水电磁波的相关生成。对耦合的波动力学和高能粒子输运方程进行数值求解,并与类似于 Lee [1982,1983]的解析近似进行比较。解析近似可以准确地表示质子分布和波强度。冲击附近的预测波磁功率谱密度(随频率变化)与ICEE 3在1978年11月11日至12日测量的波谱之间实现了极好的一致性,行星际行进冲击。还比较了预测的总波能密度与AMPTE / IRM卫星在地球弓激波上游观测到的总波能密度之间的比较,以进行1984年至1985年末大约400次近鼻事件的统计研究。波功率和预测非常好,相关系数为0.92。但是,平均观测到的波磁能密度约为预测值的63%,这表明可能存在波耗散,这在理论中并未包括在内。在第二部分中,我们给出了在扩展电晕中回旋平均离子传输方程的半解析解,用于离子分布函数。我们采用动力学壳模型的基本特征[ Isenberg ,1997; 2001a,b,c; Isenberg et al 。,2000,2001],因此,我们将离子分布描述为回旋共振部分和非共振部分。我们包括重力,双极性电场,绝热减速和磁镜,但保持太阳风和波的相速度恒定。电子质子的冷等离子体弥散关系用于确定波离子共振条件。所获得的离子分布函数的实际分析形式显然不是Maxwellian或bi-Maxwellian。我们的解决方案描述了在扩展电晕中经常观察到的一些非热现象:各向异性的温度分布,以及质子和次要离子物种之间的差异流。然而,我们无法对质子和O 5 + 离子的径向温度依赖性进行建模。

著录项

  • 作者

    Gordon, Bruce Edward.;

  • 作者单位

    University of New Hampshire.;

  • 授予单位 University of New Hampshire.;
  • 学科 Physics Astronomy and Astrophysics.; Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 天文学;等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号