首页> 外文学位 >Semiconductor nanowires for nanotechnology: Synthesis, properties, nanoelectronics, nanophotonics, and nanosensors.
【24h】

Semiconductor nanowires for nanotechnology: Synthesis, properties, nanoelectronics, nanophotonics, and nanosensors.

机译:用于纳米技术的半导体纳米线:合成,特性,纳米电子学,纳米光子学和纳米传感器。

获取原文
获取原文并翻译 | 示例

摘要

Semiconductor Nanowires (NWs) are ideally suited for efficient transport of charge carriers and excitons, and thus are expected to be critical building blocks for nanotechnology. In this thesis, we present a bottom-up approach to build up the future nanoelectronics, nanophotonics and nanosensors with semiconductor NWs.; We first present the size-selective synthesis of semiconductor NWs via a metal cluster-catalyzed vapor-liquid-solid (VLS) growth mechanism. The diameter and length of the NWs are controlled by the Au catalyst diameter and the growth time, respectively. High resolution transmission electron microscopy studies demonstrate that NWs have single crystal core sheathed with 1–3 nm amorphous oxide. The crystallographic growth orientation is size-dependent.; We then discuss NW electronic transport properties, functional nanoelectronic and nanophotonic devices. Semiconductor NWs are precisely doped into p- and n-type during synthesis. Carrier mobility of NWs estimated from field effect is significantly larger than the bulk material value. The electrical measurements through small diameter (∼10 nm) intrinsic NWs show evidence of ballistic transport. All these results suggest that NWs have high quality for nano functional devices. Moreover, NWs are assembled into functional nanoelectronic and nanophotonic devices including NW cross pn diodes and light-emitting diodes, bipolar transistors, inverters, and photodetectors. The facile way in assembling NWs into functional nano-devices represents a big step towards bottom-up nanotechnology.; Finally we describe how NW FETs are converted into electrical-based label-free, highly sensitive and selective chemical and biological sensors. NW nanosensor concepts are first approved by real-time detection of a variety of chemical and biological species including pH, proteins and metal ions. These NW sensors are applied to the multiplexing detection of cancer markers with high specificity and ultrahigh sensitivity down to femtogram/ml level, significant for cancer diagnostics and therapy. The sensitivity limit of NW sensors is further explored to detect the single molecule binding. This promises a new method to study single molecule.
机译:半导体纳米线(NWs)非常适合有效传输电荷载流子和激子,因此有望成为纳米技术的关键组成部分。在本文中,我们提出了一种自下而上的方法来构建具有半导体NW的未来纳米电子学,纳米光子学和纳米传感器。我们首先介绍通过金属簇催化的气液固(VLS)生长机理的半导体NW的尺寸选择性合成。 NW的直径和长度分别由Au催化剂直径和生长时间控制。高分辨率透射电子显微镜研究表明,NW具有包覆有1-3 nm无定形氧化物的单晶核。晶体学的生长方向取决于尺寸。然后,我们讨论NW电子传输特性,功能纳米电子和纳米光子器件。在合成过程中,半导体NW精确地掺杂为p型和n型。根据场效应估计的NW的载流子迁移率明显大于散装材料的值。通过小直径(<〜10 nm)本征NW进行的电学测量显示了弹道运输的证据。所有这些结果表明,纳米线对于纳米功能器件具有高质量。此外,NW被组装成功能性的纳米电子和纳米光子器件,包括NW交叉pn二极管和发光二极管,双极晶体管,反相器和光电探测器。将NW组装成功能纳米器件的简便方法代表了朝着自下而上的纳米技术迈出的一大步。最后,我们描述了NW FET如何转换为基于电气的无标签,高灵敏度和选择性的化学和生物传感器。 NW纳米传感器概念首先通过实时检测各种化学和生物种类(包括pH值,蛋白质和金属离子)而获得批准。这些NW传感器以低至飞克/毫升的水平,以高特异性和超高灵敏度应用于癌症标志物的多重检测,对于癌症诊断和治疗具有重要意义。进一步探索NW传感器的灵敏度极限,以检测单分子结合。这有望成为研究单分子的新方法。

著录项

  • 作者

    Cui, Yi.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号