首页> 外文学位 >Gallium arsenide-based quantum dot vertical-cavity surface-emitting lasers and microcavity light-emitting diodes.
【24h】

Gallium arsenide-based quantum dot vertical-cavity surface-emitting lasers and microcavity light-emitting diodes.

机译:基于砷化镓的量子点垂直腔面发射激光器和微腔发光二极管。

获取原文
获取原文并翻译 | 示例

摘要

Due to quantum dots'atom -like density of states, quantum dot lasers have been expected to exhibit ultralow threshold current, temperature-insensitive operation, high modulation speed due to narrow spectral linewidth, high material gain and high differential gain. Quantum dot optoelectronic devices have advanced rapidly since the advent of self-organized QD growth technique.; To obtain temperature-insensitive low threshold QD lasers, ground state lasing is highly desirable, the devices should operate close to transparency and far below the saturation, and thermal population of the upper energy levels needs to be suppressed. Three stack InAs/GaAs QD edge-emitting lasers are fabricated and characterized with either 500 Å or 300 Å GaAs spacer thickness. For 500 Å spaced QD lasers, a combination of wide energy separation of 95 meV and relatively high internal efficiency of 74% leads to low threshold operation and high characteristic temperature To of 126 K beyond room temperature.; In semiconductor vertical-cavity surface-emitting lasers (VCSELs), extremely high reflectivities are required for both top and bottom mirrors. Critical VCSEL design issues include alignment between the cavity resonance and the optical gain peak, lateral optical confinement, high contrast-ratio DBR mirrors. Ground state lasing of a 1.07 μm oxide-confined InGaAs/GaAs QD VCSEL is demonstrated using intracavity contacts and low loss cavity design, with the room temperature lasing threshold of ∼700 μA and ∼270 μA for 10 μm and 2 μm devices, respectively. The much lower experimental cavity Q is shown due to the excessive distributed loss in the upper dielectric mirror.; In planar microcavity light-emitting diodes (MCLEDs) enhanced efficiency and narrower spectral linewidth are achieved through modifying the optical mode structure. To fully take advantage of the enhanced mode coupling provided by the microcavity, it is important to electronically confine the carriers to small optical mode volume, which can be achieved in apertured QD-MCLEDs. Apertured QD-MCLEDs are first demonstrated showing the efficiency enhancement with reduced mode size. The highest efficiency of 16% for apertured QD-MCLED is achieved by designing resonance tuning at low temperature of 160 K.
机译:由于量子点的类似于原子的态密度,已经期望量子点激光器表现出超低阈值电流,对温度不敏感的操作,由于窄谱线宽,高材料增益和高差分增益而具有高调制速度。自组织的QD生长技术问世以来,量子点光电器件已迅速发展。为了获得对温度不敏感的低阈值QD激光器,非常需要基态激光,器件应接近透明且远低于饱和,并且需要抑制较高能级的热量。制造了三叠InAs / GaAs QD边缘发射激光器,并以500或300ÅGaAs隔离层厚度进行了表征。对于500Å间隔的QD激光器,宽的能量分离(95 meV)和相对较高的内部效率(74%)相结合,会导致低阈值操作和高于室温的126 K的高特征温度To。在半导体垂直腔表面发射激光器(VCSEL)中,顶部和底部反射镜都需要极高的反射率。关键的VCSEL设计问题包括谐振腔谐振和光学增益峰值之间的对准,横向光学限制,高对比度比率DBR反射镜。使用腔内接触和低损耗腔设计证明了1.07μm氧化物限制的InGaAs / GaAs QD VCSEL的基态激光发射,其中10μm和2μm器件的室温激光发射阈值分别约为700μA和270μA。由于上介电镜中的分布损耗过大,显示了更低的实验腔Q。在平面微腔发光二极管(MCLED)中,可以通过修改光学模式结构来提高效率并缩小光谱线宽。为了充分利用微腔提供的增强模式耦合,重要的是将载流子电子限制在较小的光学模式体积,这可以在开孔QD-MCLED中实现。首次展示了开孔QD-MCLED,显示出效率提高和模式尺寸减小。通过在160 K的低温下设计谐振调谐,可实现带孔QD-MCLED最高16%的效率。

著录项

  • 作者

    Zou, Zhengzhong.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Electronics and Electrical.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 p.2335
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号