首页> 外文学位 >Optimization of TCE degradation in counter-diffusional, membrane-attached, methanotrophic biofilms for remediation of contaminated groundwater.
【24h】

Optimization of TCE degradation in counter-diffusional, membrane-attached, methanotrophic biofilms for remediation of contaminated groundwater.

机译:优化TCE在反扩散,膜附着的甲烷营养生物膜中TCE降解的水平,以修复受污染的地下水。

获取原文
获取原文并翻译 | 示例

摘要

This study develops, evaluates, and optimizes the potential of a novel “counter-diffusional” membrane biofilm reactor system to biologically treat and remove trichloroethylene (TCE) from contaminated soil and groundwater caused by industrial activities. TCE, as a very popular industrial solvent, has been widely used for degreasing in aircraft engines, electronic components industry, automobile parts, printing industry, and textiles industry for about 55 years. Because of widespread industrial use, inadequate disposal techniques, and accidental spills, TCE has become a crucial contaminant in soil and groundwater. Because of its toxicity and carcinogenic, TCE has been classified and rated as a priority hazardous waste pollutant by the US-EPA.; In this research a novel and potentially important methanotrophic biofilm design and operational factors for overcoming some key problems inherent in cometabolic biodegradation of CAHs were studied. The objectives of the research are to investigate and evaluate design and operational factors affecting the sustainability and degradation rates of TCE transformation in a counter-diffusional membrane-attached methanotrophic biofilms.; As a first step attaining this objective, an overall mass transfer coefficient of the bioreactor was developed, a 23 laboratory experimental design have already conducted, and the development of a mathematical model and computer simulation describing the concentration profile of substrates and TCE within the biofilm has been introduced. The model primarily focuses on concentration profiles of CH4, O2, and TCE to find potential for process optimizations.; A maximum sustainable TCE removal flux of approximately 205 μmol/m 2/day was successfully attained when the CH4 utilization rate was approximately 11.667 mmoles/m2/hr, the TCE loading rate was approximately 400 μmol/m2/day. The experimental results also demonstrated that higher biofilm detachment rate of 32.4 mg/L.; Normal probability plot and pareto chart indicated that methane partial pressure (P) and hydraulic Reynolds's numbers (Re) have important and significant positive effects on the TCE degradation rates. The average percentage of TCE removal efficiency falls between 78.6 and 94.7%. The calculated CH4 utilization rates falls between 7.919 and 11.667 mmoles/m2 /hr. The biofilm detachment rates falls between 12.1 and 32.7 mg/L of measured Total Suspended Solids (TSS) in the bioreactor's effluents.
机译:这项研究开发,评估和优化了新型“反扩散”膜生物膜反应器系统的潜力,该系统可从工业活动造成的污染土壤和地下水中生物处理和去除三氯乙烯(TCE)。三氯乙烯(TCE)作为一种非常流行的工业溶剂,已被广泛用于飞机发动机,电子零件行业,汽车零件,印刷行业和纺织行业的脱脂,已有约55年的历史。由于广泛的工业用途,处理技术不足和意外泄漏,TCE已成为土壤和地下水中的关键污染物。由于其毒性和致癌性,TCE已被US-EPA分类并列为优先危险废物污染物。在这项研究中,研究了一种新颖且潜在重要的甲烷营养生物膜设计和操作因素,以克服CAH的代谢生物降解中固有的一些关键问题。该研究的目的是调查和评估影响与反扩散膜连接的甲烷营养生物膜中TCE转化的可持续性和降解率的设计和操作因素。作为实现此目标的第一步,开发了生物反应器的整体传质系数,已经进行了2 3 实验室实验设计,并开发了描述浓度曲线的数学模型和计算机模拟引入了生物膜中的底物和三氯乙烯(TCE)。该模型主要关注CH 4 ,O 2 和TCE的浓度曲线,以发现工艺优化的潜力。当CH 4 利用率约为11.667 mmoles / m 2 时,成功获得最大可持续TCE去除通量约为205μmol/ m 2 /天。的TCE加载速率约为400μmol/ m 2 /天。实验结果还表明,较高的生物膜分离速率为32.4 mg / L。正态概率图和视差图表明,甲烷分压(P)和水力雷诺数(Re)对三氯乙烯的降解速率具有重要且显着的积极影响。 TCE去除效率的平均百分比介于78.6和94.7%之间。计算得出的CH 4 利用率在7.919至11.667 mmoles / m 2 / hr之间。在生物反应器的流出物中测得的总悬浮固体(TSS)的生物膜分离速率介于12.1和32.7 mg / L之间。

著录项

  • 作者

    Ali, Firdaus.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号