首页> 外文学位 >Modelling unsaturated granular pavement materials using bounding surface plasticity.
【24h】

Modelling unsaturated granular pavement materials using bounding surface plasticity.

机译:使用边界表面可塑性对不饱和粒状路面材料进行建模。

获取原文
获取原文并翻译 | 示例

摘要

Most pavement structures in the USA and worldwide are designed using outdated techniques and minimal laboratory testing, and are constructed using practices that don't achieve maximum economic value from materials. These design methods are based on empirical relationships, or on a basic mechanistic analysis with an empirical correlation to field performance. The empirical relationships were often developed for new construction, but most current road construction in the USA is maintenance or rehabilitation of existing structures. Empirical methods are useful for conditions similar to those used in the development of the design method, but because of modern construction practices and equipment, new and innovative materials, increasing traffic loads and local climatic and soil conditions, many empirical relations are no longer valid and may not predict the correct trends in performance.; Granular material layers are an important component of a flexible pavement structure. The unsaturated granular pavement materials (UGPMs) in these layers influence stresses and strains throughout the pavement structure, and can have a large effect on asphalt concrete fatigue and pavement rutting, which are two of the primary failure mechanisms for flexible pavements.; A bounding surface plasticity model was developed to predict the elastic and plastic response of UGPMs at different water contents, densities and stress states. The model includes a new approach to calculating effective stress in unsaturated soils, and a rigorous non-linear elasticity formulation that overcomes limitations of many previous approaches.; Model predictions were shown to compare favorably to laboratory test results on two California aggregate base materials. The constitutive model can provide quantitative predictions of the effect of density, water content, stress state and rotation of principal stress axes on both elastic and plastic strains. Laboratory and field experiments have indicated these variables have a large effect on response, but the effect has been difficult to quantify using either empirical or mechanistic methods. The model can be used to provide better understanding of UGPM response under laboratory and field conditions, and will assist in the development of cost-effective pavement design methods.
机译:美国和世界范围内的大多数人行道结构均采用过时的技术和最少的实验室测试进行设计,并采用无法从材料中获得最大经济价值的做法进行建造。这些设计方法基于经验关系,或者基于与现场性能具有经验相关性的基本机理分析。经验关系通常是为新建建筑而开发的,但是美国目前大多数的公路建设都是对现有结构的维护或修复。对于与设计方法开发中所使用的条件类似的条件,经验方法是有用的,但是由于现代建筑实践和设备,新颖的材料,不断增加的交通负荷以及当地的气候和土壤条件,许多经验关系不再有效,并且可能无法预测正确的绩效趋势。粒状材料层是柔性路面结构的重要组成部分。这些层中的不饱和粒状路面材料(UGPM)会影响整个路面结构的应力和应变,并且可能对沥青混凝土的疲劳和路面车辙产生很大影响,这是柔性路面的两个主要破坏机理。建立了边界表面可塑性模型,以预测不同水含量,密度和应力状态下UGPM的弹性和塑性响应。该模型包括一种用于计算非饱和土壤中有效应力的新方法,以及一种严格的非线性弹性公式,该公式克服了许多以前方法的局限性。结果表明,模型预测与两种加利福尼亚骨料基础材料的实验室测试结果相比具有优势。本构模型可以提供密度,水含量,应力状态和主应力轴旋转对弹性应变和塑性应变的影响的定量预测。实验室和现场实验表明,这些变量对响应有很大的影响,但是使用经验方法或机械方法很难量化该影响。该模型可用于更好地理解实验室和野外条件下的UGPM响应,并将有助于开发具有成本效益的路面设计方法。

著录项

  • 作者

    Heath, Andrew Craig.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 242 p.
  • 总页数 242
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号