首页> 外文学位 >Generalized Quantum Master Equations: Getting More for Less
【24h】

Generalized Quantum Master Equations: Getting More for Less

机译:广义量子主方程:事半功倍

获取原文
获取原文并翻译 | 示例

摘要

This thesis describes the development of practical and efficient computational approaches to the quantum dynamics of complex systems. Most of the work presented here relies on the generalized quantum master equation (GQME) formalism, which provides a simple equation of motion of reduced dimensionality for a set of dynamical quantities, e.g., nonequilibrium averages and equilibrium time correlation functions. The reduced dimensionality of the GQME comes at a cost: the introduction of the memory kernel, which accounts for the influence of all ``excluded'' degrees of freedom. Focusing first on the second-order perturbative treatment of the memory kernel known as Redfield theory, I present a collaborative effort to extend its applicability into highly non-Markovian regions via a mode freezing approach. In this method, a portion of bath modes characterized by low frequencies are treated as sources of static disorder and used to calculate modified Redfield dynamics. Application of the method to the spin-boson and FMO complex models indicates that the Redfield+frozen modes scheme consistently produces dynamics that are as good or better than bare Redfield dynamics. Next, we explore GQME approach coupled to the self-consistent solution of the memory kernel, which requires the calculation of auxiliary kernels. Previous implementations of the method had shown impressive boosts in efficiency and, when approximate methods were used to calculate the auxiliary kernels, accuracy over direct calculation of nonequilibrium averages. We show that this method, when formulated from the Mori perspective, is equally applicable to nonequilibrium averages and equilibrium correlation functions. In addition, we examine the dependence of the improvements afforded by the GQME framework on the choice projection operator and kernel closure. In particular, we demonstrate that improvements in efficiency, which rely on short memory lifetimes, are sensitively dependent on the choice of projection operator, and that the choice of kernel closure directly dictates the improvements in accuracy. In addition, we present evidence that indicates that the success of the GQME formalism when the auxiliary kernels are calculated via semi- and quasi-classical methods is largely due to the exact sampling of bath operators at t = 0 required by the calculation of specific kernel closures. Next, we provide analytical arguments that delineate when the GQME framework coupled to the self-consistent solution of the memory kernel is likely to provide improvements in efficiency and accuracy. Finally, we present a path integral framework that can efficiently render the partially Wigner-transformed canonical density operator for systems coupled linearly to harmonic baths. This approach permits the direct calculation of any thermodynamic quantity and can be integrated into dynamical schemes like the Ehrenfest, surface hopping, or linearized semi-classical initial value representation methods to calculate equilibrium correlation functions.
机译:本文描述了复杂系统量子动力学实用高效计算方法的发展。此处提出的大多数工作都依赖于广义量子主方程(GQME)形式主义,该方程为一组动态量(例如非平衡平均值和平衡时间相关函数)提供了降维运动的简单方程。 GQME尺寸的减小是有代价的:内存内核的引入,这解决了所有``排除''自由度的影响。我首先关注内存核的二阶微扰处理(称为Redfield理论),我提出了一项合作努力,通过模式冻结方法将其适用性扩展到高度非马尔可夫区域。在这种方法中,一部分以低频为特征的浴场模式被视为静态无序的来源,并用于计算修正的Redfield动力学。该方法在自旋玻色子和FMO复杂模型中的应用表明,Redfield +冻结模式方案始终产生比裸Redfield动力学好或更好的动力学。接下来,我们探索与内存内核的自洽解决方案耦合的GQME方法,这需要计算辅助内核。该方法的先前实现方式显示出效率的显着提高,并且当使用近似方法来计算辅助内核时,其准确性要比直接计算非平衡平均值更好。我们表明,从Mori观点出发,该方法同样适用于非平衡均值和平衡相关函数。此外,我们检查了GQME框架所提供的改进对选择投影运算符和内核闭合的依赖性。特别是,我们证明了效率的提高(取决于较短的内存生存期)敏感地取决于投影运算符的选择,而内核闭包的选择直接决定了精度的提高。此外,我们提供的证据表明,当通过半经典方法和准经典方法计算辅助内核时,GQME形式主义的成功很大程度上归因于特定内核的计算所需的t = 0的浴运算符的精确采样。关闭。接下来,我们提供分析论点,这些论点描述了何时GQME框架与内存内核的自洽解决方案耦合可能会提高效率和准确性。最后,我们提出了一个路径积分框架,该框架可以为线性耦合到谐波浴的系统有效地渲染经过部分维格纳变换的规范密度算子。这种方法可以直接计算任何热力学量,并且可以集成到诸如Ehrenfest,表面跳变或线性化的半经典初始值表示方法之类的动力学方案中,以计算平衡相关函数。

著录项

  • 作者

    Montoya-Castillo, Andres.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Physical chemistry.;Condensed matter physics.;Chemistry.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号