首页> 外文学位 >Time-frequency analysis of high power microwave sources.
【24h】

Time-frequency analysis of high power microwave sources.

机译:大功率微波源的时频分析。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation utilized time-frequency analysis (TFA) to study high power microwave generation (20–40 MW) on large orbit, axis encircling, coaxial, gyrotrons. The Michigan Electron Long Beam Accelerator (MELBA) was the power source, with e-beam parameters: V = −0.7 to −1.0 MV, Idiode = 1–10 kA, Itube = 0.1–3 kA, and e-beam pulse length = 0.2–0.6 μs. The issue of greatest concern is the identification of some causes of microwave pulse shortening, that is, the duration of the microwave pulse being shorter than the duration of the cathode voltage. For years researchers have applied the Fourier transform to heterodyned microwave signals to identify frequency components of the experimental data. The problem with this technique is that a signal with multiple frequency components can have the same spectrum as that of a signal with frequency components emitted at different times. Time-frequency analysis (TFA) methods introduced to this field in this dissertation provide an entirely different outlook in the community when it was recently applied to heterodyned high power microwave signals. Results show, with unprecedented clarity, mode hopping, mode competition, and frequency modulation due to electron beam voltage fluctuations. The various processes that lead to pulse shortening for the coaxial gyrotron experiment and perhaps to other high power microwave devices may finally be identified. Time resolved maximum intensity of the TFA has produced results very similar to the microwave power signal, verifying the utility of TFA in the analysis of the temporal evolution of power in each mode.; Time-frequency analysis utilizes the Fourier transform of the local autocorrelation function, resulting in a spectrum with a large variance. Spectral variance has been reduced by applying discrete prolate spherical sequences (DPSS). The main advantages of DPSS lie in the wide main lobe and small secondary lobes, placing spectral energy around the actual frequency while minimizing spectral leakage.
机译:本文利用时频分析技术研究了大轨道,同轴,同轴,回旋加速器上大功率微波的产生(20-40 MW)。密歇根电子长束加速器(MELBA)是电源,其电子束参数为:V = -0.7至-1.0 MV,I diode = 1–10 kA,I tube < / sub> = 0.1–3 kA,电子束脉冲长度= 0.2–0.6μs。最令人关注的问题是确定微波脉冲缩短的一些原因,即,微波脉冲的持续时间短于阴极电压的持续时间。多年来,研究人员已将傅里叶变换应用于杂化微波信号,以识别实验数据的频率分量。该技术的问题在于,具有多个频率分量的信号可能具有与具有在不同时间发射的频率分量的信号相同的频谱。本文最近将时频分析(TFA)方法引入该领域,在最近将其应用于外差式高功率微波信号时,提供了一个完全不同的观点。结果显示,由于电子束电压波动,模式跳跃,模式竞争和频率调制具有前所未有的清晰度。最终可以确定导致同轴回旋加速器实验的脉冲缩短以及可能导致其他高功率微波设备的各种过程。时间分辨的TFA的最大强度产生的结果与微波功率信号非常相似,从而验证了TFA在分析每种模式下功率随时间变化时的效用。时频分析利用了局部自相关函数的傅立叶变换,从而产生了具有较大方差的频谱。通过应用离散的扁球形序列(DPSS)可以减少频谱方差。 DPSS的主要优势在于宽主瓣和小副瓣,将频谱能量置于实际频率附近,同时将频谱泄漏降至最低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号