首页> 外文学位 >Ground based remote sensing for irrigation management in precision agriculture.
【24h】

Ground based remote sensing for irrigation management in precision agriculture.

机译:精准农业灌溉管理的地面遥感。

获取原文
获取原文并翻译 | 示例

摘要

The relationship between remotely sensed canopy temperature and soil moisture was studied. The objectives were to relate two remotely sensed canopy temperature-based indices, the Crop Water Stress Index (CWSI) and the Water Deficit Index (WDI), to soil moisture through the water stress coefficient, to estimate soil moisture depletion with the CWSI and the WDI, and to develop a remote sensing system aboard a linear move irrigation system that would provide field images of the WDI at one-meter spatial resolution. Studies were conducted in Maricopa, Arizona during the 1998 and 1999 seasons with cotton (Gossypium hirsutum, Delta Pine 90b). In 1998, the field was surface irrigated (low frequency irrigation), and the CWSI was calculated from canopy temperature measurements using stationary infrared thermometers. In 1999, the field was irrigated with a linear move system (high frequency irrigation), and the WDI was calculated using measurements made by the on board remote sensing system. Both the CWSI and the WDI were correlated to soil moisture through the water stress coefficient. Soil moisture depletion could be estimated using the CWSI under low frequency irrigation, but could not be estimated using the WDI under high frequency irrigation. These differences were attributed to the range of soil moisture resulting from infrequent surface irrigation vs. frequent irrigation using the linear move. High spatial resolution images of the WDI could nonetheless monitor water stress throughout the field from partial to full canopy cover, which demonstrated that ground-based remote sensing is feasible for irrigation management in precision agriculture. This application of remote sensing provides an opportunity to improve water use efficiency.
机译:研究了遥感冠层温度与土壤水分之间的关​​系。目的是通过水分胁迫系数将两个基于遥感冠层温度的指数(作物水分胁迫指数(CWSI)和水分亏缺指数(WDI))与土壤水分相关联,以利用CWSI和土壤水分指数估算土壤水分消耗。 WDI,并在线性移动灌溉系统上开发遥感系统,该系统将以一米的空间分辨率提供WDI的野外图像。在1998年和1999年两个季节,在亚利桑那州的马里科帕(Maricopa)用棉花(<斜体>陆地棉,三角洲松树90b)进行了研究。 1998年,对田间进行了地面灌溉(低频灌溉),并使用固定式红外测温仪根据冠层温度测量结果计算了CWSI。 1999年,使用线性移动系统(高频灌溉)灌溉了该田地,并使用车载遥感系统的测量结果计算了WDI。通过水分胁迫系数,CWSI和WDI都与土壤水分相关。可以在低频灌溉下使用CWSI估算土壤水分消耗,但不能在高频灌溉下使用WDI估算土壤水分消耗。这些差异归因于不频繁的地面灌溉与使用线性运动的频繁灌溉相比导致的土壤湿度范围。尽管如此,WDI的高空间分辨率图像仍可以监测整个田地从部分冠层到全部冠层的水分胁迫,这表明基于地面的遥感技术对于精准农业的灌溉管理是可行的。遥感的这种应用提供了提高用水效率的机会。

著录项

  • 作者

    Colaizzi, Paul Dominic.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Engineering Agricultural.; Agriculture Agronomy.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 农业工程;农学(农艺学);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号