首页> 外文学位 >Tectonic Evolution of the Northeastern Tibetan Plateau.
【24h】

Tectonic Evolution of the Northeastern Tibetan Plateau.

机译:青藏高原东北部的构造演化。

获取原文
获取原文并翻译 | 示例

摘要

How the Tibetan Plateau was constructed and evolved in response to ongoing India-Asia convergence since 65-55 Ma is fundamental in understanding processes of continental tectonics. Furthermore, the kinematics and mechanisms of plateau formation and continental deformation have implications for the complex interactions between tectonics, erosion, and climate change in Earth's most recent history. To provide insights into these processes, my research is focused on the development of the northern margin of the Tibetan Plateau, which is defined by the 350-km-wide and 1300-km-long Cenozoic Qilian Shan-Nan Shan thrust belt. This active fold and thrust system overprinted a region that has a complex pre-Cenozoic tectonic history involving multiple phases of Proterozoic basement deformation and early Paleozoic orogeny. In this work, I integrate geologic mapping, balanced cross section construction and restoration, seismic reflection interpretation, geochronology, thermobarometry, geodetic data analysis, and analogue modeling to investigate the tectonic development of northern Tibet over a range of timescales, from the Proterozoic evolution of central Asian cratons to the active deformation that is shaping the northern margin of the Tibetan Plateau.;The magnitude, style, and distribution of Cenozoic shortening strain across northern Tibet can be used to test competing models of continental deformation. The shortening distribution across the Qilian Shan-Nan Shan thrust belt, derived from surface mapping and subsurface seismic reflection profiles, suggests that the modern thickness and elevation of the northern plateau has developed as a result of southward continental underthrusting of Asia beneath Tibet and distributed crustal thickening. The thrust systems in northern Tibet link to the east with > ~1000-km-long parallel left-slip strike-slip faults (i.e., the Haiyuan, Qinling, and Kunlun faults). The along-strike variation of fault offsets and pervasive off-fault deformation along these strike-slip faults create a strain pattern that departs from the expectations of the classic plate-like rigid-body motion and flow-like distributed deformation models of continental deformation. Instead, I propose that the major strike-slip faults formed as a non-rigid bookshelf-fault system where clockwise rotation of northern Tibet drives left-slip bookshelf faulting and related off-strike-slip fault deformation. In addition, I employ a stress-shadow model that uses the characteristic spacing of strike-slip faults and seismogenic-zone thickness estimates across northern Tibet and central Asia to estimate fault strength and the regional stress state. The strike-slip faults in Asia have a low coefficient of fault friction (~0.15), which may explain why deformation penetrates more than 3500 km into Asia from the Himalayan collisional front, and why the interior of Asia is prone to large (M > 7.0) devastating earthquakes along major strike-slip faults.;A well-constrained understanding of Cenozoic deformation across northern Tibet allows for better reconstructions of the Proterozoic and Paleozoic tectonics. Field relationships and geochronologic studies reveal that the early Paleozoic Qilian suture, which bounds the southern margin of the North China craton, records the Ordovician-early Silurian closure of the Qilian Ocean via south-dipping subduction beneath the Qaidam continent. The evolution of this ocean and North China's southern margin has implications for reconstructions of Neoproterozoic and Paleozoic Earth, including the development of the Tethyan and Paleo-Asian Oceanic Domains. By restoring the Phanerozoic deformation along the northern and southern margins of the Tarim and North China cratons, I propose and test a hypothesis that these cratons once stretched westward across present-day Asia, possibly as far west as Baltica, as a continuous Neoproterozoic continent.
机译:自65-55 Ma以来,印度-亚洲不断融合,如何构造和发展青藏高原是理解大陆构造过程的基础。此外,高原形成和大陆变形的运动学和机理对地球最近历史上的构造,侵蚀和气候变化之间的复杂相互作用具有影响。为了提供对这些过程的见解,我的研究集中在青藏高原北缘的发展,该地区是由350公里长和1300公里长的新生代祁连山—南山逆冲带所定义的。这种活动的褶皱和逆冲系统覆盖了一个区域,该区域具有复杂的新生代前构造历史,涉及到元古代基底变形和早期古生代造山运动的多个阶段。在这项工作中,我整合了地质制图,平衡断面的构造和恢复,地震反射解释,地质年代学,热压法,大地数据分析和模拟模型,以研究藏北地区从元古代的演化开始的构造发展。中亚克拉通到正在形成青藏高原北缘的活动变形;整个西藏北部的新生代缩短应变的大小,样式和分布可用于测试大陆变形的竞争模型。由地表测绘和地下地震反射剖面图得出的祁连山-南山逆冲带的缩短分布表明,北部高原的现代厚度和高度是由于西藏以下亚洲向南大陆性逆冲作用和地壳分布而形成的增厚。西藏北部的逆冲系统以大于约1000公里的平行左滑走滑断裂(即海原,秦岭和昆仑断裂)与东部相连。沿着这些走滑断层的断层偏移和沿断层变形的沿走向变化产生了一种应变模式,该应变模式偏离了典型的板状刚体运动和流形分布的大陆变形模型的期望。相反,我建议将主要的走滑断层形成为非刚性书架断层系统,在该系统中,西藏北部的顺时针旋转会驱动左滑书架断层和相关的走走滑断层变形。此外,我采用了应力阴影模型,该模型利用走滑断层的特征间距和整个西藏北部和中亚的地震成因带厚度估算来估算断层强度和区域应力状态。亚洲的走滑断层的断层摩擦系数很低(〜0.15),这可以解释为什么变形从喜马拉雅碰撞带渗透到3500公里以上的亚洲,以及为什么亚洲内部容易变大(M> 7.0)沿主要走滑断层造成的毁灭性地震。对西藏北部新生代变形的充分限制的理解可以更好地重建元古代和古生代构造。田间关系和地质年代学研究表明,早古生代祁连缝合线束缚着华北克拉通的南缘,它通过柴达木大陆下方的南倾俯冲记录了祁连海洋的奥陶纪-志留纪早闭世。该海洋和华北南部边缘的演化对新元古代和古生代地球的重建具有重要意义,包括特提斯和古亚洲海洋域的发展。通过恢复塔里木和华北克拉通北部和南部边缘的生代变质,我提出并检验了一个假设,即这些克拉通曾经向西延伸到当今亚洲,可能一直延伸到波罗的海以西,成为连续的新元古代大陆。

著录项

  • 作者

    Zuza, Andrew Vincent.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Geology.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 521 p.
  • 总页数 521
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号