首页> 外文学位 >Perforated hollow core waveguides for Alkali Vapor-cells and Slow Light Devices.
【24h】

Perforated hollow core waveguides for Alkali Vapor-cells and Slow Light Devices.

机译:用于碱性蒸气室和慢光设备的带孔空心波导。

获取原文
获取原文并翻译 | 示例

摘要

The focus of this work is the integration of alkali vapor atomic vapor cells into common silicon wafer microfabrication processes. Such integrated platforms enable the study of quantum coherence effects such as electromagnetically induced transparency, which can in turn be used to demonstrate slow light. Slow and stopped light devices have applications in the optical communications and quantum computing fields. This project uses hollow core anti-resonant reflecting optical waveguides (ARROWs) to build such slow light devices. An explanation of light-matter interactions and the physics of slow light is first provided, as well as a detailed overview of the fabrication process. Following the discovery of a vapor transport issue, a custom capillary-based testing platform is developed to quantify the effect of confinement, temperature, and wall coatings on rubidium transport. A mathematical model is derived from the experimental results and predicts long transport times. A new design methodology is presented that addresses the transport problem by increasing the number of rubidium entry points. This design also improves chip durability and decreases environmental susceptibility through the use of a single copper reservoir and buried channel waveguides (BCWs). New chips are successfully fabricated, loaded, and monitored for rubidium spectra. Absorption is observed in several chips and absorption peaks depths in excess of 10% are reported. The chip lifetime remains comparable to previous designs. This new design can be expanded to a multi-core platform suitable for slow and stopped light experimentation.;Keywords: Matthieu Giraud-Carrier, Aaron Hawkins, microfabrication, spectroscopy, slow light, stopped light, EIT, rubidium, diffusion, vapor transport, microfabrication, ARROW, light-matter interactions, waveguide.
机译:这项工作的重点是将碱性蒸气原子蒸气电池集成到普通的硅晶片微细加工工艺中。这样的集成平台可以研究量子相干效应,例如电磁感应的透明性,进而可以用来演示慢光。慢速和熄灯设备在光通信和量子计算领域具有应用。该项目使用空心抗共振反射光波导(ARROW)来构建这种慢光设备。首先提供了光-物质相互作用和慢光物理的解释,以及制造过程的详细概述。发现蒸气传输问题之后,开发了基于毛细管的定制测试平台,以量化限制,温度和壁涂层对rub传输的影响。从实验结果中得出数学模型,并预测较长的运输时间。提出了一种新的设计方法,该方法通过增加of入口的数量来解决运输问题。这种设计还通过使用单个铜储层和掩埋沟道波导(BCW)来提高芯片的耐用性并降低环境敏感性。成功制造,装载并监控了loaded光谱的新芯片。在几个碎片中观察到吸收,据报道吸收峰深度超过10%。芯片寿命与以前的设计相当。这种新设计可以扩展到适用于慢光和停止光实验的多核平台。关键词:Matthieu Giraud-Carrier,Aaron Hawkins,微细加工,光谱学,慢光,停止光,EIT,rub,扩散,蒸气传输,微细加工,箭头,光-物质相互作用,波导。

著录项

  • 作者

    Giraud-Carrier, Matthieu C.;

  • 作者单位

    Brigham Young University.;

  • 授予单位 Brigham Young University.;
  • 学科 Electrical engineering.;Optics.;Physics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号