首页> 外文学位 >Bacteriophage treatment of hydrogen sulfide-producing bacteria and Salmonella biofilms in rendering processing environment.
【24h】

Bacteriophage treatment of hydrogen sulfide-producing bacteria and Salmonella biofilms in rendering processing environment.

机译:提纯加工环境中噬菌体处理产生硫化氢的细菌和沙门氏菌生物膜的方法。

获取原文
获取原文并翻译 | 示例

摘要

Raw animal by-products destined for rendering process may contain high population of harmful microorganisms including hydrogen sulfide-producing bacteria (SPB) and Salmonella. SPB are the spoilage bacteria that can utilize sulfur-containing compounds of raw animal by-products to produce hazardous gas-hydrogen sulfide (H2S) which is toxic. Salmonella may contaminate the rendered animal meals resulting in an introduction of human pathogens into the food chain. Furthermore, both SPB and Salmonella are likely to form biofilms on the various surfaces in rendering processing environment, serving as the source of recontamination and causing persistent microbiological safety problems. Therefore, novel and practical strategies to control these harmful bacteria need to be explored.;Bacteriophages are bacterial viruses that only infect specific species of bacteria without harming animals, plants and human, thus bacteriophage treatment has been explored as a novel biological method to control biofilms formed by persistent bacteria due to their high specificity and effectiveness. Therefore, the objectives of this study were: 1) to identify the sources of Salmonella contamination in rendering processing environment; 2) to optimize a scale-up production of Salmonella-specific bacteriophages; 3) to determine the effectiveness of bacteriophage treatment on reducing Salmonella and SPB attachment/biofilms on the surfaces under laboratory and greenhouse conditions; and 4) to apply bacteriophage treatment to reduce Salmonella and SPB attachment/biofilms on the surfaces in rendering processing environment.;For the first objective, a microbiological analysis of Salmonella contamination was conducted in two rendering plants in order to investigate the potential cross-contamination of Salmonella in rendering processing environment. Sampling locations were pre-determined at the potential areas where Salmonella contamination may occur including raw materials receiving, crax grinding and the finished meal loading-out areas.;For the second objective, a mixed bacteriophage production in a single batch was developed. To scale up the production of Salmonella-specific bacteriophages with low cost for field study (fourth objective). Bacteriophage titer of mixed bacteriophage production yielded 10.3 log PFU/ml with optimized conditions of multiplicity of infection (MOI) of 0.01, agitation speed of 200 rpm, nalidixic acid at concentration of 0.06 mug/ml and incubation time of 8 h at 37°C. Additionally, final titer of bacteriophage production could reach up to 11.5 log PFU/ml with a PEG-6000 precipitation at concentration of 8% and sodium chloride at concentration of 3%.;In the third objective, three SPB strains of Citrobacter freundii (n = 1) and Hafnia alvei (n = 2) were separately determined as strong biofilm formers using a 96-well microplate method. Application of 9 SPB-specific bacteriophages (107 PFU/mL) from families of Siphoviridae and Myoviridae resulted in 33-70% reduction of biofilm formation by each SPB strain. On stainless steel and plastic templates, bacteriophage treatment (108 PFU/mL) reduced the attached cells of a mixed SPB culture (no biofilm) by 2.3 and 2.7 log CFU/cm2 within 6 h at 30°C, respectively, as compared to 2 and 1.5 log CFU/cm 2 reductions of SPB biofilms within 6 h at 30°C.;For the fourth objective, our research on bacteriophage treatment of SPB and Salmonella was conducted in a rendering plant. For SPB application, indigenous SPB were allowed to form biofilms on the environmental surface, stainless steel, HDPE plastic, and rubber templates in a rendering plant for 7 days. A total of two trials were conducted for each season. With bacteriophage treatment (109 PFU/mL) for 6 h at room temperature, SPB biofilms were reduced by 0.7-1.4, 0.3-0.6 and 0.2-0.6 log CFU/cm 2 in spring, summer and fall trials, respectively.;In summary, our study examined the current contamination rates of Salmonella in rendered animal meals and rendering processing environment, and indicated the high potential of finished meals being recontaminated with Salmonella biofilms during the post-rendering process. We also optimized a scale-up production of mixed bacteriophages in a single batch with reduced cost for field application. Moreover, our study demonstrated that bacteriophages could reduce the selected SPB and Salmonella attachment/biofilms formed on various surfaces effectively, suggesting that the use of bacteriophages on the hard surfaces in rendering processing environment could control H 2S produced by SPB and Salmonella recontamination in rendered meals. Furthermore, the results of field study demonstrated the effectiveness of bacteriophage treatments in reducing indigenous SPB and Salmonella attachment/biofilms formed on the surfaces in rendering processing environment.;Overall, our research findings validated bacteriophage treatment as an effective, non-corrosive and environmentally friendly biological control method to reduce SPB and Salmonella attachment/biofilms in rendering processing environment, thereby, helping the rendering industry to have a safe working environment for workers and produce high quality rendered animal meals free from Salmonella contamination. (Abstract shortened by ProQuest.).
机译:用于提炼过程的动物副产品可能含有大量有害微生物,包括产生硫化氢的细菌(SPB)和沙门氏菌。 SPB是一种腐败细菌,可以利用动物副产品的含硫化合物产生有毒的有害气体-硫化氢(H2S)。沙门氏菌可能污染提炼的动物饲料,导致人类病原体进入食物链。此外,SPB和沙门氏菌都可能在提炼加工环境中的各种表面上形成生物膜,从而成为污染源并引起持续的微生物安全性问题。因此,需要探索控制这些有害细菌的新颖和实用的策略。噬菌体是仅感染特定细菌种类而不损害动物,植物和人类的细菌病毒,因此,噬菌体治疗已被视为控制生物膜的一种新型生物学方法。由于它们的高度特异性和有效性,由持久性细菌形成。因此,本研究的目标是:1)确定提炼加工环境中沙门氏菌污染的来源; 2)优化沙门氏菌特异性噬菌体的大规模生产; 3)确定在实验室和温室条件下噬菌体处理对减少沙门氏菌和SPB附着/生物膜表面的有效性; 4)进行噬菌体处理以减少提炼加工环境中表面沙门氏菌和SPB的附着/生物膜。为了第一个目标,在两个提炼厂中进行了沙门氏菌污染的微生物学分析,以研究潜在的交叉污染。沙门氏菌在渲染处理环境中的效果。在可能会出现沙门氏菌污染的潜在区域(包括原料接收,绞碎的玉米粉和最终的饭菜上料区域)预先确定采样位置。;第二个目标是开发单批混合噬菌体生产。以低成本进行大规模生产沙门氏菌特异性噬菌体的研究(第四个目标)。混合噬菌体生产的噬菌体滴度达到10.3 log PFU / ml,优化的感染复数(MOI)为0.01,搅拌速度为200 rpm,萘啶酸的浓度为0.06 cup / ml,在37°C的孵育时间为8 h 。此外,在8%浓度的PEG-6000沉淀和3%浓度的氯化钠沉淀下,噬菌体生产的最终滴度可达到11.5 log PFU / ml。第三个目标是,三株SPB弗氏柠檬酸杆菌菌株(n = 1)和Hafnia alvei(n = 2)使用96孔微孔板法分别确定为强生物膜形成剂。施用来自幽门螺杆菌和肌病毒科的9种SPB特异性噬菌体(107 PFU / mL)可使每种SPB菌株减少33-70%的生物膜形成。在不锈钢和塑料模板上,噬菌体处理(108 PFU / mL)在30°C下在6小时内将混合SPB培养物(无生物膜)的附着细胞分别减少了2.3和2.7 log CFU / cm2,相比之下,2在30°C下6 h内SPB生物膜减少1.5 log CFU / cm 2。为实现第四个目标,我们在提炼厂中进行了SPB和沙门氏菌噬菌体处理的研究。对于SPB的应用,允许本地SPB在提炼厂中在环境表面,不锈钢,HDPE塑料和橡胶模板上形成生物膜7天。每个季节总共进行了两次试验。在室温下用噬菌体处理(109 PFU / mL)6 h,在春季,夏季和秋季试验中,SPB生物膜分别降低了0.7-1.4、0.3-0.6和0.2-0.6 log CFU / cm 2。 ,我们的研究检查了沙门氏菌在动物提炼动物饲料和提炼加工环境中的当前污染率,并表明在提炼后的过程中,成品食品被沙门氏菌生物膜污染的可能性很高。我们还优化了单批混合噬菌体的放大生产,降低了现场应用的成本。此外,我们的研究表明,噬菌体可以有效地减少选定的SPB和沙门氏菌在各种表面上形成的附着/生物膜,这表明在提炼加工环境中在坚硬表面上使用噬菌体可以控制SPB和沙门氏菌再污染提炼食品中产生的H 2S 。此外,现场研究的结果证明了噬菌体处理在减少加工过程环境中表面上固有的SPB和沙门氏菌附着/生物膜方面的有效性。总体而言,我们的研究结果证实了噬菌体处理是一种有效的方法。一种非腐蚀性,环保的生物防治方法,可减少提炼加工环境中的SPB和沙门氏菌附着/生物膜,从而帮助提炼行业为工人提供一个安全的工作环境,并生产不受沙门氏菌污染的优质提炼动物粉。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Gong, Chao.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Microbiology.;Food science.;Public health.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号