首页> 外文学位 >Kinetic simulation, network analysis, and biomedical applications of PEG-containing network polymers synthesized from free-radical polymerizations.
【24h】

Kinetic simulation, network analysis, and biomedical applications of PEG-containing network polymers synthesized from free-radical polymerizations.

机译:自由基聚合合成的含PEG的网络聚合物的动力学模拟,网络分析和生物医学应用。

获取原文
获取原文并翻译 | 示例

摘要

Design of novel biomaterials for applications in biological recognition, drug delivery, or diagnostics requires a judicious choice of preparation conditions and methods for the production of well characterized three-dimensional structures, preferably by benign processes. In this work, the polymerization of poly(ethylene glycol) (PEG) methacrylates was examined by kinetic gelation modeling and kinetic analysis in order to ascertain the factors affecting the resulting structure. The kinetics of the polymerization and the structure of the final polymer network are strongly affected by the initial monomer structure and by the presence of solute materials. The propagation of the polymer chains becomes increasingly diffusion-limited with the incorporation of longer PEG grafts. In addition, a more heterogeneous network consisting of numerous microgel regions is produced as the length of the PEG graft is increased.; In an effort to afford more control of the free-radical polymerization, a "living" radical polymerization with an iniferter ( initiator-transfer agent-ter minator) was also examined. The presence of an iniferter introduces a reversible termination reaction due to the presence of a dithiocarbamate group. Kinetic gelation modeling demonstrates that the reversible termination does not alter the pendent double bond reactivity in the polymerization of multifunctional monomers. However, the kinetics of these polymerizations is affected as the rate of polymerization drastically decreases due to the reversible termination. Various parameters of the reaction may be changed to increase the rate of polymerization and the conversion. Generally, more radicals must be introduced or the diffusion of monomers increased.; Finally, polymerization with an iniferter can be used to create micropatterned surfaces. Novel, photosensitive polymers are created by the incorporation of dithiocarbamate groups from iniferters. A second monomer layer is then irradiated on these photosensitive polymers to form a copolymer. Patterns are created on the films by application of modified photolithographic techniques. The technique can be used to create patterns with depths from 5 mum to 80 mum. In addition, various polymers can be incorporated, including PEG methacrylates, styrene, and methacrylic acid, to synthesize regions with different physicochemical properties. Applications include surfaces for the selective adhesion of cells and proteins.
机译:设计用于生物识别,药物输送或诊断的新型生物材料,需要明智地选择制备条件和方法,以最好地通过良性过程来生产特征明确的三维结构。在这项工作中,通过动力学凝胶化建模和动力学分析检查了聚(乙二醇)(PEG)甲基丙烯酸酯的聚合反应,以确定影响最终结构的因素。聚合动力学和最终聚合物网络的结构受初始单体结构和溶质材料的存在的强烈影响。随着更长的PEG接枝的引入,聚合物链的扩散变得越来越受扩散限制。另外,随着PEG接枝长度的增加,产生了由许多微凝胶区域组成的更加异构的网络。为了提供对自由基聚合的更多控制,还研究了具有引发剂(引发剂-转移剂-终止剂)的“活性”自由基聚合。引发剂的存在由于二硫代氨基甲酸酯基的存在而引入了可逆的终止反应。动力学凝胶化建模表明,可逆终止不改变多官能单体聚合中的侧链双键反应性。但是,由于可逆终止,聚合速率急剧降低,因此影响了这些聚合的动力学。可以改变反应的各种参数以增加聚合速率和转化率。通常,必须引入更多的自由基或增加单体的扩散。最后,可以使用具有引发剂的聚合反应来形成微图案表面。新型的光敏聚合物是通过掺入来自发色团的二硫代氨基甲酸酯基团制成的。然后将第二单体层照射在这些光敏聚合物上以形成共聚物。通过应用改进的光刻技术在胶片上创建图案。该技术可用于创建深度从5微米到80微米的图案。此外,可以掺入各种聚合物,包括PEG甲基丙烯酸PEG,苯乙烯和甲基丙烯酸,以合成具有不同物理化学性质的区域。应用包括选择性粘附细胞和蛋白质的表面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号