首页> 外文学位 >Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization
【24h】

Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization

机译:使用双脉冲预电离的新型激光点火技术

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in the development of compact high power laser sources and fiber optic delivery of giant pulses have generated a renewed interest in laser ignition. The non-intrusive nature of laser ignition gives it a set of unique characteristics over the well-established capacitive discharge devices (or spark plugs) that are currently used as ignition sources in engines. Overall, the use of laser ignition has been shown to have a positive impact on engine operation leading to a reduction in NOx emission, fuel saving and an increased operational envelope of current engines.;Conventionally, laser ignition is achieved by tightly focusing a high-power q-switched laser pulse until the optical intensity at the focus is high enough to breakdown the gas molecules. This leads to the formation of a spark that serves as the ignition source in engines. However, there are certain disadvantages associated with this ignition method. This ionization approach is energetically inefficient as the medium is transparent to the laser radiation until the laser intensity is high enough to cause gas breakdown. As a consequence, very high energies are required for ignition (about an order of magnitude higher energy than capacitive plugs at stoichiometric conditions). Additionally, the fluid flow induced during the plasma recombination generates high vorticity leading to high rates of flame stretching.;In this work, we are addressing some of the aforementioned disadvantages of laser ignition by developing a novel approach based on a dual-pulse pre-ionization scheme. The new technique works by decoupling the effect of the two ionization mechanisms governing plasma formation: multiphoton ionization (MPI) and electron avalanche ionization (EAI). An UV nanosecond pulse (lambda = 266 nm) is used to generate initial ionization through MPI. This is followed by an overlapped NIR nanosecond pulse (lambda = 1064 nm) that adds energy into the pre-ionized mixture into a controlled manner until the gas temperature is suitable for combustion (T=2000-3000 K). This technique is demonstrated by attempting ignition of various mixtures of propane-air and it is shown to have distinct advantages when compared to the classical approach: lower ignition energy for given stoichiometry than conventional laser ignition (~20% lower), extension of the lean limit (~15% leaner) and improvement in combustion efficiency. Moreover, it is demonstrated that careful alignment of the two pulses influences the fluid dynamics of the early flame kernel growth. This finding has a number of implications for practical uses as it demonstrates that the flame kernel dynamics can be tailored using various combinations of laser pulses and opens the door for implementing such a technique to applications such as: flame holding and flame stabilization in high speed flow combustors (such as ramjet and scramjet engines), reducing flame stretching in highly turbulent combustion devices and increasing combustion efficiency for stationary natural gas engines. As such, the work presented in this dissertation should be of interest to a broad audience including those interested in combustion research, engine operation, chemically reacting flows, plasma dynamics and laser diagnostics.
机译:紧凑型高功率激光源的开发和巨脉冲光纤传输方面的最新进展引起了人们对激光点火的新兴趣。激光点火的非侵入性使其在目前已用作发动机点火源的完善电容放电设备(或火花塞)上具有一系列独特的特性。总体而言,已证明使用激光点火会对发动机的运行产生积极影响,从而减少NOx排放,节省燃料并增加当前发动机的运行范围。功率调Q开关激光脉冲,直到焦点处的光强度高到足以分解气体分子。这导致形成火花,该火花用作发动机中的点火源。但是,这种点火方法存在某些缺点。这种电离方法在能量上效率低下,因为介质对激光辐射是透明的,直到激光强度高到足以引起气体击穿为止。结果,点火需要非常高的能量(在化学计量条件下,能量比电容性插头高大约一个数量级)。此外,在等离子体重组过程中引起的流体流动会产生高涡度,从而导致火焰扩展率很高。在这项工作中,我们正在通过开发基于双脉冲预脉冲的新型方法来解决激光点火的上述缺点。电离方案。这项新技术通过将控制等离子体形成的两种电离机理的作用去耦合:多光子电离(MPI)和电子雪崩电离(EAI)。 UV纳秒脉冲(λ= 266 nm)用于通过MPI产生初始电离。随后是重叠的NIR纳秒脉冲(λ= 1064 nm),该脉冲以受控方式将能量添加到预电离的混合物中,直到气体温度适合燃烧(T = 2000-3000 K)为止。通过尝试点燃各种丙烷-空气混合物证明了该技术,与传统方法相比,它具有明显的优势:与传统的激光点火方法相比,给定化学计量的点火能量更低(降低了约20%),稀薄燃料的延伸极限(稀薄约15%)并提高了燃烧效率。此外,已经证明,两个脉冲的仔细对准会影响火焰核早期生长的流体动力学。这一发现对实际应用具有许多意义,因为它表明可以使用激光脉冲的各种组合来定制火焰核动力学,并为在以下应用中实施这种技术打开了大门:高速流动中的火焰保持和火焰稳定燃烧器(例如冲压喷气发动机和超燃冲压发动机),可减少高湍流燃烧设备中的火焰拉伸,并提高固定式天然气发动机的燃烧效率。因此,本论文介绍的工作应引起广泛的关注,包括对燃烧研究,发动机运行,化学反应流,等离子体动力学和激光诊断感兴趣的人们。

著录项

  • 作者

    Dumitrache, Ciprian.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Engineering.;Energy.;Plasma physics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号