首页> 外文学位 >Ultrafast dynamics and phase changes in solids excited by femtosecond laser pulses.
【24h】

Ultrafast dynamics and phase changes in solids excited by femtosecond laser pulses.

机译:飞秒激光脉冲激发的固体中的超快动力学和相变。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation reports the response of crystalline GaAs, amorphous GaAs and thin films of amorphous GeSb when a femtosecond laser pulse excites 1--20% of the valence electrons. We developed a broadband pump-probe technique to measure the dielectric function from the near-infrared to the near-ultraviolet with a time resolution of about 100 femtoseconds. The dielectric function provides more information than ever before on the ultrafast electronic and structural dynamics and the phase changes that occur.; The dynamics depend on the excitation strength. In crystalline and amorphous GaAs, electronic effects dominate during the first few picoseconds for weaker excitations. The excited carriers affect optical properties not only through free carrier absorption, as previous experiments suggested, but also through modifications to the band structure (or allowed energy states) and filling of conduction states. Excited carriers recombine through an Auger process in crystalline GaAs and, in both phases, transfer their energy to the lattice via phonon emission. The materials consequently heat, and the dielectric function tracks the rise in lattice temperature.; For strong excitations, the dielectric function data contradict the suggestion, from reflectivity measurements at 620 nm, that GeSb films undergo a remarkable amorphous-to-crystalline transition in about 200 femtoseconds. The dielectric function we observe at this time does not match that of the thermodynamic crystalline phase. Instead the transition leads to a metal-like state that is likely to be disordered.; We observe a similar ultrafast semiconductor-to-disordered-metal transition in all three materials when the excitation is sufficiently strong. The transition can take as little as 150 femtoseconds, but it always takes longer than the pulse duration. Thus the excited electrons do not cause the change directly; rather bonds are broken when electrons are excited, the ions move to new positions and a non-thermal structural transition takes place. In all three materials, the plasma frequency of the resulting metallic state falls over time, due either to diffusion of carriers into the material or ablation from the surface.
机译:本文报道了飞秒激光脉冲激发价电子的1--20%时,晶体GaAs,非晶态GaAs和非晶态GeSb薄膜的响应。我们开发了一种宽带泵浦探测技术,以大约100飞秒的时间分辨率测量从近红外到近紫外的介电功能。介电功能比以往任何时候都提供更多有关超快电子和结构动力学以及发生的相变的信息。动力学取决于激励强度。在晶体和非晶态砷化镓中,电子效应在前几皮秒内占主导地位,而激发强度较弱。激发的载流子不仅通过自由载流子吸收(如先前的实验所建议的那样)影响光学性质,而且还通过对能带结构(或允许的能态)的修饰和导电态的填充来影响光学性能。激发的载流子通过俄歇过程在晶体GaAs中重组,并在两个阶段通过声子发射将其能量转移到晶格中。材料因此加热,介电功能跟踪晶格温度的上升。对于强激发,介电函数数据与620 nm反射率测量所暗示的建议相反,即GeSb膜在大约200飞秒内经历了明显的从非晶态到结晶态的转变。我们此时观察到的介电函数与热力学晶相的介电函数不匹配。相反,过渡导致可能会无序的类金属状态。当激发足够强时,我们在所有三种材料中观察到类似的超快的半导体到无序金属的转变。转换过程可能只需要150飞秒,但是总要比脉冲持续时间更长。因此,被激发的电子不会直接引起变化。而是当电子被激发时,键断裂,离子移动到新的位置,并发生非热结构转变。在所有三种材料中,由于载流子扩散到材料中或从表面烧蚀,所得到的金属态的等离子体频率随时间下降。

著录项

  • 作者

    Callan, John Paul.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Physics Optics.; Physics Condensed Matter.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 308 p.
  • 总页数 308
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号