首页> 外文学位 >Automatic mesh generation for semiconductor process and device simulations using a generalized Octree method.
【24h】

Automatic mesh generation for semiconductor process and device simulations using a generalized Octree method.

机译:使用广义Octree方法为半导体工艺和设备仿真自动生成网格。

获取原文
获取原文并翻译 | 示例

摘要

Computer simulations have become increasingly important with advances in processing techniques and device designs for integrated circuits (ICs). The common numerical analysis methods, including finite element and finite volume methods, require generation of a meshed structure that represents the domain to be solved. However, mesh generation is still a major bottleneck in computer-aided design of IC technology (TCAD). With the increased importance of 3D effects in ICs, quality mesh generation has become a necessary step in achieving efficient 3D simulations. Such meshing requires the capability to place a minimum number of grid points at locations dictated both by the IC geometry and technology. Additionally, adaptation of grid is required for transient simulations.; A generalized octree method has been developed for 3D TCAD process and device simulations. An improved and automated octree method enables anisotropic refinement so that more grid points can be placed in regions with highly non-uniform physical properties. Exploiting the tree structure facilitates refinement and de-refinement and interpolation errors can be reduced by minimizing or avoiding completely the movement of grid. Detailed tetrahedralization algorithms are implemented so that internal, boundary and interface mesh conformities are all satisfied. Grid post-processing steps such as local Delaunay transformation are included in order to improve mesh quality as required for subsequent numerical analysis. Tool integration with simulators used for analysis is considered, based on a client-server architecture. Examples provide demonstration of algorithm efficiency in generating anisotropic mesh while maintaining strict mesh conformity for complex geometries.
机译:随着集成电路(IC)的处理技术和设备设计的进步,计算机仿真变得越来越重要。常见的数值分析方法(包括有限元法和有限体积法)要求生成表示要求解域的网格结构。但是,网格生成仍然是IC技术(TCAD)的计算机辅助设计的主要瓶颈。随着3D效果在IC中的重要性日益提高,高质量网格生成已成为实现高效3D仿真的必要步骤。这种网格划分要求能够在IC几何形状和技术所规定的位置放置最少数量的网格点。另外,瞬态仿真需要网格的适应。已为3D TCAD过程和设备仿真开发了通用的octree方法。改进的自动八叉树方法可以进行各向异性改进,以便可以在物理特性高度不均匀的区域中放置更多的网格点。利用树形结构有助于细化和反细化,并且可以通过最小化或完全避免网格移动来减少插值错误。实施了详细的四面体化算法,从而满足内部,边界和界面网格的一致性。包括网格后处理步骤(例如局部Delaunay变换),以根据后续数值分析的要求提高网格质量。考虑基于客户端-服务器架构的工具与用于分析的模拟器的集成。示例提供了在生成各向异性网格时算法效率的证明,同时针对复杂的几何形状保持了严格的网格一致性。

著录项

  • 作者

    Chen, Tao.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号