首页> 外文学位 >Non-invasive thermal profiling of silicon wafer surface during RTP using acoustic and signal processing techniques.
【24h】

Non-invasive thermal profiling of silicon wafer surface during RTP using acoustic and signal processing techniques.

机译:使用声学和信号处理技术,在RTP过程中对硅晶片表面进行非侵入式热分析。

获取原文
获取原文并翻译 | 示例

摘要

Among the great physical challenges faced by the current front-end semiconductor equipment manufacturers is the accurate and repeatable surface temperature measurement of wafers during various fabrication steps. Close monitoring of temperature is essential in that it ensures desirable device characteristics to be reliably reproduced across various wafer lots. No where is the need to control temperature more pronounced than it is during Rapid Thermal Processing (RTP) which involves temperature ramp rates in excess of 200°C/s. This dissertation presents an elegant and practical approach to solve the wafer surface temperature estimation problem, in context of RTP, by deploying hardware that acquires the necessary data while preserving the integrity and purity of the wafer.;In contrast to the widely used wafer-contacting (and hence contaminating) methods, such as bonded thermocouples, or environment sensitive schemes, such as light-pipes and infrared pyrometry, the proposed research explores the concept of utilizing Lamb (acoustic) waves to detect changes in wafer surface temperature, during RTP. Acoustic waves are transmitted to the wafer via an array of quartz rods that normally props the wafer inside an RTP chamber. These waves are generated using piezoelectric transducers affixed to the bases of the quartz rods. The group velocity of Lamb waves traversing the wafer surface undergoes a monotonic decrease with rise in wafer temperature. The correspondence of delay in phase of the received Lamb waves and the ambient temperature, along all direct paths between sending and receiving transducers, yields a psuedo real-time thermal image of the wafer.;Although the custom built hardware-setup implements the above "proof-of-concept" scheme by transceiving acoustic signals at a single frequency, the real-world application will seek to enhance the data acquistion. rate (>1000 temperature measurements per seconds) by sending and receiving Lamb waves at multiple frequencies (by employing broadband quartz rod-transducer assembles). Experimental results, as predicted by prior rigorous simulations, prove that the temperature measurement accuracy obtained through several dynamic runs using the above specified approach, is better than +/-2°C. Furthermore, these results are highly repeatable and independent of wafer treatment conditions, thereby extolling the versatility and immunity of the new method from environmental conditions.
机译:当前的前端半导体设备制造商面临的巨大物理挑战之一是在各种制造步骤中对晶圆的表面温度进行精确且可重复的测量。密切监控温度至关重要,因为这样可以确保在各种晶圆批次之间可靠地复制出所需的器件特性。没有比在快速热处理(RTP)期间更需要控制温度的需求了,该过程涉及超过200°C / s的温度上升速率。本文提出了一种优雅而实用的方法,在RTP的背景下,通过部署在保持晶片完整性和纯度的同时获取必要数据的硬件来解决晶片表面温度估算问题。与广泛使用的晶片接触相反(并因此污染)方法(例如粘合热电偶)或对环境敏感的方案(例如光导管和红外高温测定法),提出的研究探索了在RTP期间利用Lamb(声)波检测晶片表面温度变化的概念。声波通过通常在RTP腔室内支撑晶片的石英棒阵列传输到晶片。这些波是使用固定在石英棒底部的压电换能器产生的。随着晶片温度的升高,穿过晶片表面的兰姆波的群速度经历单调下降。沿发送和接收换能器之间的所有直接路径,接收到的兰姆波的相位延迟与环境温度的对应关系会产生晶圆的伪实时热图像。;尽管定制的硬件设置实现了上述“通过在单个频率上接收声音信号的“概念验证”方案,现实世界的应用将寻求增强数据采集。通过使用多个频率发送和接收兰姆波(通过使用宽带石英棒-换能器组件)来提高速率(每秒测量1000次温度)。如先前的严格模拟所预测的,实验结果证明,使用上述指定方法通过几次动态运行获得的温度测量精度优于+/- 2°C。此外,这些结果是高度可重复的,并且与晶片处理条件无关,从而彰显了该新方法对环境条件的多功能性和免疫力。

著录项

  • 作者

    Syed, Ahmed Rashid.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号