首页> 外文学位 >An adaptive dual-optimal path-planning technique for unmanned air vehicles with application to solar-regenerative high altitude long endurance flight.
【24h】

An adaptive dual-optimal path-planning technique for unmanned air vehicles with application to solar-regenerative high altitude long endurance flight.

机译:一种适用于无人飞行器的自适应双最优路径规划技术,应用于太阳能再生高空长航程飞行。

获取原文
获取原文并翻译 | 示例

摘要

A multi-objective technique for Unmanned Air Vehicle (UAV) path and trajectory autonomy generation, through task allocation and sensor fusion has been developed. The Dual-Optimal Path-Planning (D-O.P-P.) Technique generates on-line adaptive flight paths for UAVs based on available flight windows and environmental influenced objectives. The environmental influenced optimal condition, known as the driver' determines the condition, within a downstream virtual window of possible vehicle destinations and orientation built from the UAV kinematics. The intermittent results are pursued by a dynamic optimization technique to determine the flight path. This sequential optimization technique is a multi-objective optimization procedure consisting of two goals, without requiring additional information to combine the conflicting objectives into a single-objective. An example case-study and additional applications are developed and the results are discussed; including the application to the field of Solar Regenerative (SR) High Altitude Long Endurance (HALE) UAV flight.;Harnessing solar energy has recently been adapted for use on high altitude UAV platforms. An aircraft that uses solar panels and powered by the sun during the day and through the night by SR systems, in principle could sustain flight for weeks or months. The requirements and limitations of solar powered flight were determined. The SR-HALE UAV platform geometry and flight characteristics were selected from an existing aircraft that has demonstrated the capability for sustained flight through flight tests. The goals were to maintain continual Situational Awareness (SA) over a case-study selected Area of Interest (AOI) and existing UAV power and surveillance systems. This was done for still wind and constant wind conditions at altitude along with variations in latitude.;The characteristics of solar flux and the dependence on the surface location and orientation were established along with fixed flight maneuvers for the SR-HALE UAV. A sustained turn circle flight pattern, common for vehicles in loiter was selected as a baseline for comparisons.;The objectives of the D-O.P-P. Technique for SR-HALE flight were to determine the minimum required power flight paths to the predetermined location and orientation for obtaining maximum solar flux established by the 'driver.' The on-line path generation technique prolonged the flight duration, over the baseline by approximately two months for a year of flight over the case-study AOI. This prolonged flight was consistent for all latitude locations, including two months of available flight at 60 degree latitude---where sustained turn baseline flight was no longer capable. This was possible by increasing the total solar power by as much as 28% while decreasing the averaged power required for flight.
机译:通过任务分配和传感器融合,开发了一种用于无人机和路径自主性生成的多目标技术。双最优路径规划(D-O.P-P。)技术可根据可用的飞行窗口和受环境影响的目标为无人机生成在线自适应飞行路径。受环境影响的最佳状况,即驾驶员确定的状况,位于可能的车辆目的地和根据UAV运动学建立的方向的下游虚拟窗口中。间歇结果通过动态优化技术来确定飞行路径。这种顺序优化技术是由两个目标组成的多目标优化过程,无需其他信息即可将冲突目标组合为一个目标。进行了案例研究和其他应用示例,并对结果进行了讨论;包括在太阳能再生(SR)高海拔长期耐力(HALE)无人机飞行领域中的应用。利用太阳能最近已适应于在高海拔无人机平台上使用。在白天和夜晚通过SR系统使用太阳能电池板并由太阳提供动力的飞机,原则上可以维持飞行数周或数月。确定了太阳能飞行的要求和局限性。 SR-HALE无人机平台的几何形状和飞行特性是从现有飞机中选择的,该飞机具有通过飞行测试进行持续飞行的能力。目标是在个案研究中选择感兴趣的区域(AOI)和现有的无人机电源和监视系统,以保持连续的态势感知(SA)。这是针对海拔高度不变的风和恒风条件以及纬度的变化而完成的。确定了SR-HALE无人机的太阳通量特征,对表面位置和方向的依赖性以及固定的飞行动作。选择在游荡者中常见的持续转弯圈飞行模式作为比较的基准。; D-O.P-P的目标。 SR-HALE飞行的技术是确定到达预定位置和方向的最小所需动力飞行路径,以获得“驾驶员”建立的最大太阳通量。在线路径生成技术将通过案例研究AOI进行的一年的飞行时间延长了基线,延长了大约两个月。这种长时间飞行在所有纬度位置都是一致的,包括在60度纬度下可以进行两个月的飞行-在这种情况下,持续转弯基准飞行不再能够进行。这可以通过将总太阳能增加多达28%,同时降低飞行所需的平均功率来实现。

著录项

  • 作者

    Whitfield, Clifford A.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号