首页> 外文学位 >Development, parameterization and validation of dynamic material models for soil and transparent armor glass.
【24h】

Development, parameterization and validation of dynamic material models for soil and transparent armor glass.

机译:用于土壤和透明盔甲玻璃的动态材料模型的开发,参数化和验证。

获取原文
获取原文并翻译 | 示例

摘要

Despite the signing of several mine ban treaties in the 1990's, it is widely recognized that there is a landmine crisis. The following are some of the main aspects of this crisis: (a) Millions of unexploded landmines remain deployed all over the world; (b) Thousands of civilians are killed or maimed every year by unintended detonations of the mines; (c) The cost of medical treatment of landmine injuries runs into the millions; (d) the ability of the international community to provide the humanitarian relief in terms of medical services, safe drinking water and food, etc., is greatly hampered by landmine contamination of the infrastructure in mine affected countries; and so on. To address the aforementioned landmine crisis, the research community around the world has taken upon itself the challenge of helping better understand the key phenomena associated with landmine detonation and interaction between detonation products, mine fragments and soil ejecta with the targets (people, structures and vehicles). Such improved understanding will help automotive manufacturers to design and fabricate personnel carriers with higher landmine-detonation survivability characteristics and a larger level of protection for the onboard personnel. In addition, the manufacturer of demining equipment and personnel protection gear used in landmine clearing are expected to benefit from a better understanding of the landmine detonation-related phenomena.;The landmine detonation-related research activity can be broadly divided into three main categories: (a) shock and blast wave mechanics and dynamics including landmine detonation phenomena and large-deformation/high-deformation rate constitutive models for the attendant materials (high explosive, air, soil, etc.); (b) the kinematic and structural response of the target to blast loading including the role of target design and use of blast attenuation materials; and (c) vulnerability of human beings to post-detonation phenomena such as high blast pressures, spall fragments and large vertical and lateral accelerations.;The present work falls primarily into the category (a) of the research listed above since it emphasizes the development of a large-deformation/high-deformation rate material model for soil. It is generally recognized that the properties of soil, into which a landmine is buried, play an important role in the overall effectiveness/lethality of the landmine regardless of the nature of its deployment (fully-buried, flush-buried or ground-laid). Therefore, in the present work, a series of continuum-level material models for soil of different types has been derived (using available public-domain data and various basic engineering concepts/principles), parameterized and validated against experimental results obtained from standard mine-blast testing techniques. Special attention is paid to improving the understanding of the effects of moisture, clay and gravel content on the different aspects of soil material behavior under blast loading conditions. Specifically, the effect of these soil constituents/conditions on the equation of state, strength and failure modes of the material response is investigated.;The results obtained clearly revealed that: (a) the moisture clay and gravel contents of soil can substantially affect the response of soil under blast loading conditions as well as the extent of detonation-induced impulse transferred to the target structure/personnel; (b) over all, the models developed in the present work, when used in transient non-linear dynamics analysis of landmine detonation and detonation product/mine-fragment/ soil-ejecta interaction with the target structures/personnel, yielded results which are in reasonably good agreement with their experimental counterparts.;Keywords. Material modeling; Landmine; Blast; Impulse; Compaction; AUTODYN; Soil; Sand; Clay; Gravel; Non-linear Dynamics.
机译:尽管在1990年代签署了几项禁止地雷条约,但人们普遍认识到存在地雷危机。以下是这场危机的一些主要方面:(a)全世界仍有数百万枚未爆炸的地雷; (b)每年由于意外的地雷爆炸而杀死或致残数千名平民; (c)地雷伤害的医疗费用高达数百万; (d)地雷对受地雷影响的国家的基础设施造成的污染极大地阻碍了国际社会在医疗服务,安全饮用水和食物等方面提供人道主义救济的能力;等等。为了解决上述地雷危机,世界各地的研究界都面临着挑战,即如何更好地了解与地雷引爆有关的关键现象,以及引爆产品,地雷碎片和土壤弹射与目标(人员,建筑物和车辆)之间的相互作用。 )。这种更好的理解将帮助汽车制造商设计和制造具有更高的地雷引爆生存能力和对车载人员提供更高防护等级的人员运输工具。此外,预计用于排雷的排雷设备和人员保护装备的制造商将受益于对与地雷爆炸有关现象的更好了解。;与地雷爆炸有关的研究活动大致可分为三大类: a)冲击波和爆炸波的力学和动力学,包括地雷爆炸现象以及伴随材料(高爆炸物,空气,土壤等)的大变形/高变形率本构模型; (b)目标对爆炸载荷的运动和结构响应,包括目标设计和爆炸衰减材料的使用的作用; (c)人类易遭受诸如高爆炸压力,剥落碎片以及较大的垂直和横向加速度之类的爆炸后现象的影响。;本工作主要属于上述研究的(a)类,因为它强调了发展大变形/高变形率材料模型的建立人们普遍认为,埋有地雷的土壤的性质,无论其部署的性质如何(完全埋入,埋入地下或埋入地面),在其整体效力/杀伤力方面都起着重要作用。 。因此,在目前的工作中,已经得出了一系列不同类型土壤的连续层材料模型(使用可用的公共领域数据和各种基本工程概念/原理),并根据标准矿山获得的实验结果进行了参数化和验证爆炸测试技术。要特别注意增进对潮气加载条件下水分,粘土和砾石含量对土壤物质行为不同方面影响的理解。具体而言,研究了这些土壤成分/条件对材料响应的状态,强度和破坏模式方程的影响。所获得的结果清楚地表明:(a)土壤中的水分黏土和砾石含量会大大影响土壤爆炸载荷条件下土壤的响应,以及由爆轰引起的脉冲转移到目标结构/人员的程度; (b)总而言之,在将当前工作中开发的模型用于地雷爆炸的瞬态非线性动力学分析以及与目标结构/人员的爆炸产物/地雷碎片/土壤-抛射物相互作用时,得出的结果是与实验对象相当合理的关键词。材料建模;地雷;爆破;冲动;压实; AUTODYN;泥;砂;粘土;砾石;非线性动力学。

著录项

  • 作者

    Pandurangan, Bhaskar.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 277 p.
  • 总页数 277
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号